Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Rhodes Scholars, Oxford, and the Creation of an American Elite
  • Language: en
  • Pages: 439

Rhodes Scholars, Oxford, and the Creation of an American Elite

Each year thirty-two seniors at American universities are awarded Rhodes Scholarships, which entitle them to spend two or three years studying at the University of Oxford. The program, founded by the British colonialist and entrepreneur Cecil Rhodes and established in 1903, has become the world's most famous academic scholarship and has brought thousands of young Americans to study in England. Many of these later became national leaders in government, law, education, literature, and other fields. Among them were the politicians J. William Fulbright, Bill Bradley, and Bill Clinton; the public policy analysts Robert Reich and George Stephanopoulos; the writer Robert Penn Warren; the entertaine...

Symmetries of Algebras, Volume 1
  • Language: en
  • Pages: 325

Symmetries of Algebras, Volume 1

This is the first volume of a graduate-level textbook series in the area of Algebraic Quantum Symmetry. The focus of this book series is on how one can do abstract algebra in the setting of monoidal categories. It is intended for readers who are familiar with abstract vector spaces, groups, rings, and ideals, and the author takes care in introducing categorical concepts from scratch. This book series on Symmetries of Algebras is intended to serve as learning books to newcomers to the area of research, and a carefully curated list of additional textbooks and articles are featured at the end of each chapter for further exploration. There are also numerous exercises throughout the series, with close to 200 exercises in Volume 1 alone. If you enjoy algebra, and are curious about how it fits into a broader context, this is for you.

Representation Theory, Mathematical Physics, and Integrable Systems
  • Language: en
  • Pages: 652

Representation Theory, Mathematical Physics, and Integrable Systems

Over the course of his distinguished career, Nicolai Reshetikhin has made a number of groundbreaking contributions in several fields, including representation theory, integrable systems, and topology. The chapters in this volume – compiled on the occasion of his 60th birthday – are written by distinguished mathematicians and physicists and pay tribute to his many significant and lasting achievements. Covering the latest developments at the interface of noncommutative algebra, differential and algebraic geometry, and perspectives arising from physics, this volume explores topics such as the development of new and powerful knot invariants, new perspectives on enumerative geometry and strin...

Recent Developments in Algebraic Topology
  • Language: en
  • Pages: 210

Recent Developments in Algebraic Topology

This book is an excellent illustration of the versatility of Algebraic Topology interacting with other areas in Mathematics and Physics. Topics discussed in this volume range from classical Differential Topology and Homotopy Theory (Kervaire invariant one problem) to more recent lines of research such as Topological Quantum Field Theory (string theory). Likewise, alternative viewpoints on classical problems in Global Analysis and Dynamical Systems are developed (a spectral sequence approach to normal form theory). This collection of papers is based on talks at the conference on the occasion of Sam Gitler's 70th birthday (December, 2003). The variety of topics covered in this book reflects the many areas where Sam Gitler's contributions have had an impact.

Kolmogorov Complexity and Algorithmic Randomness
  • Language: en
  • Pages: 511

Kolmogorov Complexity and Algorithmic Randomness

Looking at a sequence of zeros and ones, we often feel that it is not random, that is, it is not plausible as an outcome of fair coin tossing. Why? The answer is provided by algorithmic information theory: because the sequence is compressible, that is, it has small complexity or, equivalently, can be produced by a short program. This idea, going back to Solomonoff, Kolmogorov, Chaitin, Levin, and others, is now the starting point of algorithmic information theory. The first part of this book is a textbook-style exposition of the basic notions of complexity and randomness; the second part covers some recent work done by participants of the “Kolmogorov seminar” in Moscow (started by Kolmogorov himself in the 1980s) and their colleagues. This book contains numerous exercises (embedded in the text) that will help readers to grasp the material.

Dynamics Near the Subcritical Transition of the 3D Couette Flow I: Below Threshold Case
  • Language: en
  • Pages: 170

Dynamics Near the Subcritical Transition of the 3D Couette Flow I: Below Threshold Case

The authors study small disturbances to the periodic, plane Couette flow in the 3D incompressible Navier-Stokes equations at high Reynolds number Re. They prove that for sufficiently regular initial data of size $epsilon leq c_0mathbf {Re}^-1$ for some universal $c_0 > 0$, the solution is global, remains within $O(c_0)$ of the Couette flow in $L^2$, and returns to the Couette flow as $t rightarrow infty $. For times $t gtrsim mathbf {Re}^1/3$, the streamwise dependence is damped by a mixing-enhanced dissipation effect and the solution is rapidly attracted to the class of ``2.5 dimensional'' streamwise-independent solutions referred to as streaks.

The Triangle-Free Process and the Ramsey Number R(3,k)
  • Language: en
  • Pages: 138

The Triangle-Free Process and the Ramsey Number R(3,k)

The areas of Ramsey theory and random graphs have been closely linked ever since Erdős's famous proof in 1947 that the “diagonal” Ramsey numbers R(k) grow exponentially in k. In the early 1990s, the triangle-free process was introduced as a model which might potentially provide good lower bounds for the “off-diagonal” Ramsey numbers R(3,k). In this model, edges of Kn are introduced one-by-one at random and added to the graph if they do not create a triangle; the resulting final (random) graph is denoted Gn,△. In 2009, Bohman succeeded in following this process for a positive fraction of its duration, and thus obtained a second proof of Kim's celebrated result that R(3,k)=Θ(k2/logk). In this paper the authors improve the results of both Bohman and Kim and follow the triangle-free process all the way to its asymptotic end.

Foundations of Arithmetic Differential Geometry
  • Language: en
  • Pages: 357

Foundations of Arithmetic Differential Geometry

The aim of this book is to introduce and develop an arithmetic analogue of classical differential geometry. In this new geometry the ring of integers plays the role of a ring of functions on an infinite dimensional manifold. The role of coordinate functions on this manifold is played by the prime numbers. The role of partial derivatives of functions with respect to the coordinates is played by the Fermat quotients of integers with respect to the primes. The role of metrics is played by symmetric matrices with integer coefficients. The role of connections (respectively curvature) attached to metrics is played by certain adelic (respectively global) objects attached to the corresponding matrices. One of the main conclusions of the theory is that the spectrum of the integers is “intrinsically curved”; the study of this curvature is then the main task of the theory. The book follows, and builds upon, a series of recent research papers. A significant part of the material has never been published before.

Shock Formation in Small-Data Solutions to 3D Quasilinear Wave Equations
  • Language: en
  • Pages: 544

Shock Formation in Small-Data Solutions to 3D Quasilinear Wave Equations

In 1848 James Challis showed that smooth solutions to the compressible Euler equations can become multivalued, thus signifying the onset of a shock singularity. Today it is known that, for many hyperbolic systems, such singularities often develop. However, most shock-formation results have been proved only in one spatial dimension. Serge Alinhac's groundbreaking work on wave equations in the late 1990s was the first to treat more than one spatial dimension. In 2007, for the compressible Euler equations in vorticity-free regions, Demetrios Christodoulou remarkably sharpened Alinhac's results and gave a complete description of shock formation. In this monograph, Christodoulou's framework is ex...

Global Well-Posedness of High Dimensional Maxwell–Dirac for Small Critical Data
  • Language: en
  • Pages: 106

Global Well-Posedness of High Dimensional Maxwell–Dirac for Small Critical Data

In this paper, the authors prove global well-posedness of the massless Maxwell–Dirac equation in the Coulomb gauge on R1+d(d≥4) for data with small scale-critical Sobolev norm, as well as modified scattering of the solutions. Main components of the authors' proof are A) uncovering null structure of Maxwell–Dirac in the Coulomb gauge, and B) proving solvability of the underlying covariant Dirac equation. A key step for achieving both is to exploit (and justify) a deep analogy between Maxwell–Dirac and Maxwell-Klein-Gordon (for which an analogous result was proved earlier by Krieger-Sterbenz-Tataru, which says that the most difficult part of Maxwell–Dirac takes essentially the same form as Maxwell-Klein-Gordon.