You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Providing a range of information on polymers and polymerization techniques, this text covers the gamut of polymer science from synthesis, structure and properties to function and applications. It analyzes speciality polymers, including acrylics, fluoropolymers, polysiplanes, polyphosphazenes, and inorganic and conducting polymers. The book examines the stereochemistry of polymerization and the stereoregularity of polymers.
Few scientific developments in recent years have captured the popular imagination like the subject of'biodegradable' plastics. The reasons for this are complex and lie deep in the human subconscious. Discarded plastics are an intrusion on the sea shore and in the countryside. The fact that nature's litter abounds in the sea and on land is acceptable because it is biodegradable - even though it may take many years to be bioassimilated into the ecosystem. Plastics litter is not seen to be biodegradable and is aesthetically unacceptable because it does not blend into the natural environment. To the environmentally aware but often scientifically naive, biodegradation is seen to be the ecological...
This comprehensive, truly one-stop reference discusses monomers, methods, stereochemistry, industrial applications and more. Chapters written by internationally acclaimed experts in their respective fields cover both basic principles and up-to-date information, ranging from the controlled ring-opening polymerization methods to polymer materials of industrial interest. All main classes of monomers including heterocyclics, cyclic olefins and alkynes, and cycloalkanes, are discussed separately as well as their specificities regarding the ring-opening polymerization techniques, the mechanisms, the degree of control, the properties of the related polymers and their applications. The two last chapters are devoted to the implementation of green chemistry in ring-opening polymerization processes. Of much interest to chemists in academia and industry.
Salen Metal Complexes as Catalysts for the Synthesis of Polycarbonates from Cyclic Ethers and Carbon Dioxide, by Donald J. Darensbourg.- Material Properties of Poly(Propylene Carbonates), by Gerrit. A. Luinstra and Endres Borchardt.- Poly(3-Hydroxybutyrate) from Carbon Monoxide, by Robert Reichardt and Bernhard Rieger. - Ecoflex® and Ecovio®: Biodegradable, Performance-Enabling Plastics, by K. O. Siegenthaler, A. Künkel, G. Skupin and M. Yamamoto.- Biodegradability of Poly(Vinyl Acetate) and Related Polymers, by Manfred Amann and Oliver Minge.- Recent Developments in Ring-Opening Polymerization of Lactones, by P. Lecomte and C. Jérôme.- Recent Developments in Metal-Catalyzed Ring-Opening Polymerization of Lactides and Glycolides: Preparation of Polylactides, Polyglycolide, and Poly(lactide-co-glycolide), by Saikat Dutta, Wen-Chou Hung, Bor-Hunn Huang and Chu-Chieh Lin.- Bionolle (Polybutylenesuccinate), by Yasushi Ichikawa, Tatsuya Mizukoshi.- Polyurethanes from Renewable Resources, by David A. Babb.-
This book addresses the fields of biodegradation, environmental degradation, and photochemical degradation. The purpose of the book is to establish guidelines for terminology, nomenclature, characterization techniques and methodology, mechanisms of degradation, standard reference materials, and issues and needs. This is the first scientific book of this nature based on the findings of the world's leading scientists (academic, industrial, and federal) in this field. Hard data is presented and soft data is identified under issues and needs. New areas covered are such topics as: biodegradation with in vivo applications, environmental degradation, including anaerobic, aerobic, characterization techniques and methodology, photochemical degradation, and secondary issues associated with degradation. This publication contains information vital to environmental scientists and engineers, biomaterials scientists, pharmaceutical technologists, and chemists.
The book summarizes in a comprehensive manner many of the recent technical research accomplishments in the area of natural polymers. It discusses the various attempts reporting on solving this problem from the point of view of the chemistry and the structure of natural polymers, highlighting the drawbacks and advantages of each method and proposal. Based on considerations of structure - property relations, it is possible to obtain fibers with improved strength by making use of their nanostructures and/or mesophase properties of natural polymers. The book is a unique book with contributions from the experts of the biomaterial area research. it covers all topics related to natural biomaterials such as natural rubber, cellulose, chitin, starch, hemicellulose, lignin, alginates, soy protein, casein and their bionanocomposites and applications. This book is a useful reference for scientists, academicians, research scholars and biotechnologists.
The International Symposium on Ionic Polymerization (IP'99) was held in Kyoto, Japan, July 1999. It was sponsored by IUPAC, the Chemical Society of Japan, the Society of Polymer Science, Japan, the Society of Synthetic Organic Chemistry, Japan and the Japan Chemical Innovation Institute. The research areas covered were directed at the traditional fields of cationic, anionic and ring-opening polymerization, as well as polymer synthesis, including radical, metal catalyzed, and enzymatic polymerization, plus polycondensation and new polymer architecture. The papers in this volume of Macromolecular Symposia cover a broad range of topics illustrative of the symposium.
S. Georgiou: Laser Cleaning Methodologies of Polymer Substrates; T. Lippert: Laser Application of Polymers; J. Krueger, W. Kautek: Ultrashort Pulse Laser Interactions with Polymers and Dielectrics; Y. Zhang: Synchrotron Radiation Direct Photo-Etching of Polymers.
Environmentally Degradable Materials (EDPs) should replace petroleum-based plastics where recycling is not viable for logistic or labor cost reason. This book discusses the general background of obtaining such systems, compatibilization methodologies, control of the rate of degradation and final products after degradation, life time assessment, tox