You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
None
The fundamental treatment and management goals in diabetes mellitus are to control and normalize blood glucose levels and to prevent diabetic complications. It also includes maintaining normal growth and development and normal body weight. Proper diet, regular exercise, weight control and different therapeutic agents are the mainstays of diabetic care and management. Weight reduction and exercise have been shown to improve tissue sensitivity to insulin and allow its proper use by target tissues. It is obvious that medical management and goals of therapy for diabetes mellitus have changed since the publication of the Diabetes Control and Complications Trial in 1993. Recent studies have shown that the risk of developing retinopathy can decrease by 76% in properly managed diabetic patients when compared to control group and that clinical and laboratory signs and symptoms of nephropathy and neuropathy can also decrease by 54 to 60%. Modern approaches to the management of diabetes mellitus embrace holistic options and this book addressed various approaches in the management of diabetes mellitus.
This volume contains papers of 23 outstanding scientists who are working at the leading edge of metabolic regulation studies. Much of the volume focuses on novel aspects of signal transduction with emphasis on the role of phospholipase C in cell control mechanisms. One of the highlights of this volume is always the Special Symposium Lecture. This lecture was given for fifteen years by Nobel laureate, Sir Hans A. Krebs (UK) (now deceased). This year the Lecture was given by Nadir Maraldi, Director of the Laboratory of Cellular Biology and Electron Microscopy, University of Bologna, Italy. Professor Maraldi's presentation is on the important and novel subject of "Nuclear Proteins and Human Disease."
The book addresses the most recent developments in structural and functional proteomics underlying the recent contributions given in these areas by our laboratory to the instrumentations, the methods and the procedures as mutuated from the nanoscale sciences and technologies. These developments introduced in the last few years make now possible protein massive identification (mass spectrometry and biomolecular arrays down to nanoamounts) and protein structural characterization in solution and in crystals down to the atomic scale to an extent and to a degree so far unmatched. Emphasis is placed in the growth by nanobiofilm template of protein crystals of any type and size from millimeter to m...
I was highly flattered when I was asked by Mark Ladd and Rex Palmer if I would write the Foreword to this Fourth Edition of their book. "Ladd & Palmer" is such a well-known and classic book on the subject of crystal structure determination, one of the standards in the field: I did feel daunted by the prospect, and wondered if I could do justice to it. The determination of crystal structures by X-ray crystallography has come a long way since the 1912 discoveries of von Laue and the Braggs. In the intervening years great advances have been made, so that today it is almost taken for granted that crystal structures can be determined in which hundreds, if not thousands, of sepa rate atomic positions can be found with apparent ease. In the early years the struc tures of relatively simple materials, such as the alkali halides, were often argued over and even disputed, whereas today we routinely see published structures of most complex molecular crystals, including the structures of viruses and proteins.
Written by one of the most significant contributors to the progress of protein crystallography, this practical guide contains case studies, a troubleshooting section and pointers on data interpretation. It covers the theory, practice and latest achievements in x-ray crystallography, such that any researcher in structural biology will benefit from this extremely clearly written book. Part A covers the theoretical basis and such experimental techniques as principles of x-ray diffraction, solutions for the phase problem and time-resolved x-ray crystallography. Part B includes case studies for different kinds of x-ray crystal structure determination, such as the MIRAS and MAD techniques, molecular replacement, and the difference Fourier technique.
T. Koritsanszky, A. Volkov, M. Chodkiewicz: New Directions in Pseudoatom-Based X-Ray Charge Density Analysis.- B. Dittrich, D. Jayatilaka: Reliable Measurements of Dipole Moments from Single-Crystal Diffraction Data and Assessment of an In-Crystal Enhancement.- B. Engels, Th. C. Schmidt, C. Gatti, T. Schirmeister, R.F. Fink: Challenging Problems in Charge Density Determination: Polar Bonds and Influence of the Environment.- S. Fux, M. Reiher: Electron Density in Quantum Theory.- K. Meindl, J.Henn: Residual Density Analysis.- C. Gatti: The Source Function Descriptor as a Tool to Extract Chemical Information from Theoretical and Experimental Electron Densities.
Anhand verschiedener Beispiele zeigen die Autoren die Bedeutung der Kristallographie für Chemie und Biochemie auf und bieten somit eine gute Zusammenfassung der allgemeinen Prinzipien der Kristallstrukturanalyse. Zum einen sollen Interessierte, die diese Methode nicht selbst durchführen, in die Lage versetzt werden, deren Ergebnisse zu interpretieren. Zum anderen wird dem Leser deutlich gemacht, welche Bedeutung die ungeheure Datenmenge, die sich aus dieser Methode ergibt, einerseits für die Chemie sowie andererseits für die Biochemie hat. Das Buch ist verständlich geschrieben und mit zahlreichen Abbildungen versehen. Durch die Darstellung der Kristallstrukturanalyse im Vergleich zu anderen Methoden ist das Werk auch besonders für fortgeschrittene Studenten geeignet, die sich mit der Kristallographie vertraut machen wollen.
Describes and integrates the techniques of many advances in both chromatographic and mass spectrometric technologies. This book also covers various biophysical applications, such as H/D exchange for study of conformations, protein-protein and protein-metal and ligand interactions. It also describes atto-to-zepto-mole quantitation of 14C and 3H.