Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Recollections of a Jewish Mathematician in Germany
  • Language: en
  • Pages: 248

Recollections of a Jewish Mathematician in Germany

  • Type: Book
  • -
  • Published: 2016-10-21
  • -
  • Publisher: Birkhäuser

Abraham A. Fraenkel was a world-renowned mathematician in pre–Second World War Germany, whose work on set theory was fundamental to the development of modern mathematics. A friend of Albert Einstein, he knew many of the era’s acclaimed mathematicians personally. He moved to Israel (then Palestine under the British Mandate) in the early 1930s. In his autobiography Fraenkel describes his early years growing up as an Orthodox Jew in Germany and his development as a mathematician at the beginning of the twentieth century. ​This memoir, originally written in German in the 1960s, has now been translated into English, with an additional chapter covering the period from 1933 until his death in...

Essays on the Foundations of Mathematics
  • Language: en
  • Pages: 374

Essays on the Foundations of Mathematics

  • Type: Book
  • -
  • Published: 1961
  • -
  • Publisher: Unknown

None

Foundations of Set Theory
  • Language: en
  • Pages: 415

Foundations of Set Theory

  • Type: Book
  • -
  • Published: 1973-12-01
  • -
  • Publisher: Elsevier

Foundations of Set Theory discusses the reconstruction undergone by set theory in the hands of Brouwer, Russell, and Zermelo. Only in the axiomatic foundations, however, have there been such extensive, almost revolutionary, developments. This book tries to avoid a detailed discussion of those topics which would have required heavy technical machinery, while describing the major results obtained in their treatment if these results could be stated in relatively non-technical terms. This book comprises five chapters and begins with a discussion of the antinomies that led to the reconstruction of set theory as it was known before. It then moves to the axiomatic foundations of set theory, including a discussion of the basic notions of equality and extensionality and axioms of comprehension and infinity. The next chapters discuss type-theoretical approaches, including the ideal calculus, the theory of types, and Quine's mathematical logic and new foundations; intuitionistic conceptions of mathematics and its constructive character; and metamathematical and semantical approaches, such as the Hilbert program. This book will be of interest to mathematicians, logicians, and statisticians.

Zermelo-Fraenkel Set Theory
  • Language: en
  • Pages: 184

Zermelo-Fraenkel Set Theory

  • Type: Book
  • -
  • Published: 1968
  • -
  • Publisher: Unknown

None

Abraham Robinson
  • Language: en
  • Pages: 580

Abraham Robinson

One of the most prominent mathematicians of the twentieth century, Abraham Robinson discovered and developed nonstandard analysis, a rigorous theory of infinitesimals that he used to unite mathematical logic with the larger body of historic and modern mathematics. In this first biography of Robinson, Joseph Dauben reveals the mathematician's personal life to have been a dramatic one: developing his talents in spite of war and ethnic repression, Robinson personally confronted some of the worst political troubles of our times. With the skill and expertise familiar to readers of Dauben's earlier works, the book combines an explanation of Robinson's revolutionary achievements in pure and applied...

Integers and Theory of Numbers
  • Language: en
  • Pages: 130

Integers and Theory of Numbers

A concise work on important topics in number theory, this classic text was devised by a prominent mathematician to explain the essentials of mathematics in a manner accessible to high school and college students as well as to other readers. Clear-cut explanations cover natural numbers as cardinals, with discussions of positional notation and the ordering of numbers according to magnitude; natural numbers as ordinals, including Peano's axioms and the relation of ordinals to cardinals; the theory of numbers, encompassing prime numbers and their distribution, partitions of the circle, Fermat's simple and last theorems, perfect numbers, amicable numbers, and algebraic and ideal numbers; and rational numbers, with considerations of positive fractions, negative integers, and the field of rationals. 1955 ed.

Combinatorial and Algorithmic Mathematics
  • Language: en
  • Pages: 533

Combinatorial and Algorithmic Mathematics

Detailed review of optimization from first principles, supported by rigorous math and computer science explanations and various learning aids Supported by rigorous math and computer science foundations, Combinatorial and Algorithmic Mathematics: From Foundation to Optimization provides a from-scratch understanding to the field of optimization, discussing 70 algorithms with roughly 220 illustrative examples, 160 nontrivial end-of-chapter exercises with complete solutions to ensure readers can apply appropriate theories, principles, and concepts when required, and Matlab codes that solve some specific problems. This book helps readers to develop mathematical maturity, including skills such as ...

Logic, Methodology and Philosophy of Science III
  • Language: en
  • Pages: 569

Logic, Methodology and Philosophy of Science III

  • Type: Book
  • -
  • Published: 2000-04-01
  • -
  • Publisher: Elsevier

Logic, Methodology and Philosophy of Science III

Directory of Web Sites
  • Language: en
  • Pages: 640

Directory of Web Sites

Overloaded with the mass of information on the Internet? Frustrated by how difficult it is to find what you really want? Now you don't need to spend hours browsing around the Internet or grappling with the huge number of "hits" from an Internet search engine: the Directory of Web Sites will take you straight to the best educational sites on the Internet. From archaeology to zoology, from dance to technology, the Directory provides information more than 5,500 carefully selected Web sites that represent the best of what the Internet has to offer. The sites are grouped by subject; each one features a full description; and the text is complemented throughout by screenshots and fact boxes. As well, sites have been selected purely on educational merit: all sites with overtly commercial content and influence from Internet providers have been excluded.

Ernst Zermelo - Collected Works/Gesammelte Werke
  • Language: en
  • Pages: 673

Ernst Zermelo - Collected Works/Gesammelte Werke

Ernst Zermelo (1871-1953) is regarded as the founder of axiomatic set theory and best-known for the first formulation of the axiom of choice. However, his papers include also pioneering work in applied mathematics and mathematical physics. This edition of his collected papers will consist of two volumes. Besides providing a biography, the present Volume I covers set theory, the foundations of mathematics, and pure mathematics and is supplemented by selected items from his Nachlass and part of his translations of Homer's Odyssey. Volume II will contain his work in the calculus of variations, applied mathematics, and physics. The papers are each presented in their original language together with an English translation, the versions facing each other on opposite pages. Each paper or coherent group of papers is preceded by an introductory note provided by an acknowledged expert in the field which comments on the historical background, motivations, accomplishments, and influence.