You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
What do a bumble bee and a 747 jet have in common? It’s not a trick question. The fact is they have quite a lot in common. They both have wings. They both fly. And they’re both ideally suited to it. They just do it differently. Why Don’t Jumbo Jets Flap Their Wings? offers a fascinating explanation of how nature and human engineers each arrived at powered flight. What emerges is a highly readable account of two very different approaches to solving the same fundamental problems of moving through the air, including lift, thrust, turning, and landing. The book traces the slow and deliberate evolutionary process of animal flight—in birds, bats, and insects—over millions of years and co...
None
The physical principles of swimming and flying in animals are intriguingly different from those of ships and airplanes. The study of animal locomotion therefore holds a special place not only at the frontiers of pure fluid dynamics research, but also in the applied field of biomimetics, which aims to emulate salient aspects of the performance and function of living organisms. For example, fluid dynamic loads are so significant for swimming fish that they are expected to have developed efficient flow control procedures through the evolutionary process of adaptation by natural selection, which might in turn be applied to the design of robotic swimmers. And yet, sharply contrasting views as to ...
What role has natural selection played in shaping the structure and function of the vertebrate brain? This accessible book unravels the myriad adaptive explanations that have built up over decades, providing both a review and a critique of the work that has sought to explain which natural selection pressures have led to changes in brain size.
'Species' are central to understanding the origin and dynamics of biological diversity; explaining why lineages split into multiple distinct species is one of the main goals of evolutionary biology. However the existence of species is often taken for granted, and precisely what is meant by species and whether they really exist as a pattern of nature has rarely been modelled or critically tested. This novel book presents a synthetic overview of the evolutionary biology of species, describing what species are, how they form, the consequences of species boundaries and diversity for evolution, and patterns of species accumulation over time. The central thesis is that species represent more than just a unit of taxonomy; they are a model of how diversity is structured as well as how groups of related organisms evolve. The author adopts an intentionally broad approach, stepping back from the details to consider what species constitute, both theoretically and empirically, and how we detect them, drawing on a wealth of examples from microbes to multicellular organisms.
This novel text provides a concise synthesis of how the interactions between mitochondrial and nuclear genes have played a major role in shaping the ecology and evolution of eukaryotes. The foundation for this new focus on mitonuclear interactions originated from research in biochemistry and cell biology laboratories, although the broader ecological and evolutionary implications have yet to be fully explored. The imperative for mitonuclear coadaptation is proposed to be a major selective force in the evolution of sexual reproduction and two mating types in eukaryotes, in the formation of species, in the evolution of ornaments and sexual selection, in the process of adaptation, and in the evolution of senescence. The book highlights the importance of mitonuclear coadaptation to the evolution of complex life and champions mitonuclear ecology as an important subdiscipline in ecology and evolution.