You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
In this insightful work, Dogaru proposes a systematic framework for measuring emergence and a systematic design method to locate computationally meaningful genes in a reasonable computing time. Programs and application examples are provided so that the reader may easily understand the new concepts and develop her own specific experiments. The book’s approachability recommends it to a large audience including specialists from various interdisciplinary fields.
When it comes to robotics and bioinformatics, the Holy Grail everyone is seeking is how to dovetail logic-based inference and statistical machine learning. This volume offers some possible solutions to this eternal problem. Edited with flair and sensitivity by Hammer and Hitzler, the book contains state-of-the-art contributions in neural-symbolic integration, covering `loose' coupling by means of structure kernels or recursive models as well as `strong' coupling of logic and neural networks.
Genetic algorithms today constitute a family of e?ective global optimization methods used to solve di?cult real-life problems which arise in science and technology. Despite their computational complexity, they have the ability to explore huge data sets and allow us to study exceptionally problematic cases in which the objective functions are irregular and multimodal, and where information about the extrema location is unobtainable in other ways. Theybelongtotheclassofiterativestochasticoptimizationstrategiesthat, during each step, produce and evaluate the set of admissible points from the search domain, called the random sample or population. As opposed to the Monte Carlo strategies, in whic...
Darwinian evolutionary theory is one of the most important theories in human history for it has equipped us with a valuable tool to understand the amazing world around us. There can be little surprise, therefore, that Evolutionary Computation (EC), inspired by natural evolution, has been so successful in providing high quality solutions in a large number of domains. EC includes a number of techniques, such as Genetic Algorithms, Genetic Programming, Evolution Strategy and Evolutionary Programming, which have been used in a diverse range of highly successful applications. This book brings together some of these EC applications in fields including electronics, telecommunications, health, bioinformatics, supply chain and other engineering domains, to give the audience, including both EC researchers and practitioners, a glimpse of this exciting rapidly evolving field.
This book presents hardware-efficient algorithms and FPGA implementations for two robotic tasks, namely exploration and landmark determination. The work identifies scenarios for mobile robotics where parallel processing and selective shutdown offered by FPGAs are invaluable. The book proceeds to systematically develop memory-driven VLSI architectures for both the tasks. The architectures are ported to a low-cost FPGA with a fairly small number of system gates.
The objective of Document Analysis and Recognition (DAR) is to recognize the text and graphical components of a document and to extract information. This book is a collection of research papers and state-of-the-art reviews by leading researchers all over the world. It includes pointers to challenges and opportunities for future research directions. The main goal of the book is to identify good practices for the use of learning strategies in DAR.
In this rapidly evolving world of knowledge and technology, do you ever wonder how hydrology is catching up? Here, two highly qualified scientists edit a volume that takes the angle of computational hydrology and envision one of the science’s future directions – namely, the quantitative integration of high-quality hydrologic field data with geologic, hydrologic, chemical, atmospheric, and biological information to characterize and predict natural systems in hydrological sciences.
This book is loaded with examples in which computer scientists and engineers have used evolutionary computation - programs that mimic natural evolution - to solve many real-world problems. They aren’t abstract, mathematically intensive papers, but accounts of solving important problems, including tips from the authors on how to avoid common pitfalls, maximize the effectiveness and efficiency of the search process, and many other practical suggestions.
This edited volume is targeted at presenting the latest state-of-the-art methodologies in "Hybrid Evolutionary Algorithms". The chapters deal with the theoretical and methodological aspects, as well as various applications to many real world problems from science, technology, business or commerce. Overall, the book has 14 chapters including an introductory chapter giving the fundamental definitions and some important research challenges. The contributions were selected on the basis of fundamental ideas/concepts rather than the thoroughness of techniques deployed.
Engineered Biomimicry covers a broad range of research topics in the emerging discipline of biomimicry. Biologically inspired science and technology, using the principles of math and physics, has led to the development of products as ubiquitous as VelcroTM (modeled after the spiny hooks on plant seeds and fruits). Readers will learn to take ideas and concepts like this from nature, implement them in research, and understand and explain diverse phenomena and their related functions. From bioinspired computing and medical products to biomimetic applications like artificial muscles, MEMS, textiles and vision sensors, Engineered Biomimicry explores a wide range of technologies informed by living...