You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Number theory proves to be a virtually inexhaustible source of intriguing puzzle problems. Includes divisors, perfect numbers, the congruences of Gauss, scales of notation, the Pell equation, more. Solutions to all problems.
Treasury of challenging brainteasers includes puzzles involving numbers, letters, probability, reasoning, more: The Enterprising Snail, The Fly and the Bicycles, The Lovesick Cockroaches, many others. No advanced math needed. Solutions.
The pioneering work of Pierre de Fermat has attracted the attention of mathematicians for over 350 years. This book provides an overview of the many properties of Fermat numbers and demonstrates their applications in areas such as number theory, probability theory, geometry, and signal processing. It is an ideal introduction to the basic mathematical ideas and algebraic methods connected with the Fermat numbers.
This second edition updates the well-regarded 2001 publication with new short sections on topics like Catalan numbers and their relationship to Pascal's triangle and Mersenne numbers, Pollard rho factorization method, Hoggatt-Hensell identity. Koshy has added a new chapter on continued fractions. The unique features of the first edition like news of recent discoveries, biographical sketches of mathematicians, and applications--like the use of congruence in scheduling of a round-robin tournament--are being refreshed with current information. More challenging exercises are included both in the textbook and in the instructor's manual. Elementary Number Theory with Applications 2e is ideally suited for undergraduate students and is especially appropriate for prospective and in-service math teachers at the high school and middle school levels. * Loaded with pedagogical features including fully worked examples, graded exercises, chapter summaries, and computer exercises * Covers crucial applications of theory like computer security, ISBNs, ZIP codes, and UPC bar codes * Biographical sketches lay out the history of mathematics, emphasizing its roots in India and the Middle East
In today's extensively wired world, cryptology is vital for guarding communication channels, databases, and software from intruders. Increased processing and communications speed, rapidly broadening access and multiplying storage capacity tend to make systems less secure over time, and security becomes a race against the relentless creativity of the unscrupulous. The revised and extended third edition of this classic reference work on cryptology offers a wealth of new technical and biographical details. The book presupposes only elementary mathematical knowledge. Spiced with exciting, amusing, and sometimes personal accounts from the history of cryptology, it will interest general a broad readership.
A meditation on the beauty and meaning of numbers, exploring mathematical equations, describing some of the mathematical discoveries of the past millennia, and pondering philosophical questions about the relation of numbers to the universe.
Martin Gardner's Mathematical Games columns in Scientific American inspired and entertained several generations of mathematicians and scientists. Gardner in his crystal-clear prose illuminated corners of mathematics, especially recreational mathematics, that most people had no idea existed. His playful spirit and inquisitive nature invite the reader into an exploration of beautiful mathematical ideas along with him. These columns were both a revelation and a gift when he wrote them; no one--before Gardner--had written about mathematics like this. They continue to be a marvel. This is the original 1988 edition and contains columns published from 1974-1976.
Olympiad problems help able school students flex their mathematical muscles. Good Olympiad problems are unpredictable: this makes them worthwhile but it also makes them seem hard and even unapproachable. The Mathematical Olympiad Handbook contains some of the problems and solutions from the British Mathematical Olympiads from 1965 to 1996 in a form designed to help bright students overcome this barrier.
Who were the five strangest mathematicians in history? What are the ten most interesting numbers? Jam-packed with thought-provoking mathematical mysteries, puzzles, and games, Wonders of Numbers will enchant even the most left-brained of readers. Hosted by the quirky Dr. Googol--who resides on a remote island and occasionally collaborates with Clifford Pickover--Wonders of Numbers focuses on creativity and the delight of discovery. Here is a potpourri of common and unusual number theory problems of varying difficulty--each presented in brief chapters that convey to readers the essence of the problem rather than its extraneous history. Peppered throughout with illustrations that clarify the p...