You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Every mathematician is a person with a story. Limitless Minds tells those stories in an engaging way by featuring interviews with twelve leading mathematicians. They were invited to answer some key questions such as: Who and what were the influences that pointed them towards mathematics? Why do mathematicians devote their lives to discovering new mathematics? How do they see mathematics evolving in the future? The book, written in an accessible style and enriched by dozens of images, offers a rare insight into the minds of mathematicians, provided in their own words. It will enlighten and inspire readers about the lives, passions, and discoveries of mathematicians.
This volume contains the proceedings of the Stanford Symposium on Algebraic Topology: Applications and New Directions, held from July 23-27, 2012, at Stanford University, Stanford, California. The symposium was held in honor of Gunnar Carlsson, Ralph Cohen and Ib Madsen, who celebrated their 60th and 70th birthdays that year. It showcased current research in Algebraic Topology reflecting the celebrants' broad interests and profound influence on the subject. The topics varied broadly from stable equivariant homotopy theory to persistent homology and application in data analysis, covering topological aspects of quantum physics such as string topology and geometric quantization, examining homology stability in algebraic and geometric contexts, including algebraic -theory and the theory of operads.
This collection brings together influential papers by mathematicians exploring the research frontiers of topology, one of the most important developments of modern mathematics. The papers cover a wide range of topological specialties, including tools for the analysis of group actions on manifolds, calculations of algebraic K-theory, a result on analytic structures on Lie group actions, a presentation of the significance of Dirac operators in smoothing theory, a discussion of the stable topology of 4-manifolds, an answer to the famous question about symmetries of simply connected manifolds, and a fresh perspective on the topological classification of linear transformations. The contributors include A. Adem, A. H. Assadi, M. Bökstedt, S. E. Cappell, R. Charney, M. W. Davis, P. J. Eccles, M. H. Freedman, I. Hambleton, J. C. Hausmann, S. Illman, G. Katz, M. Kreck, W. Lück, I. Madsen, R. J. Milgram, J. Morava, E. K. Pedersen, V. Puppe, F. Quinn, A. Ranicki, J. L. Shaneson, D. Sullivan, P. Teichner, Z. Wang, and S. Weinberger.
The minimal polynomials of the images of unipotent elements in irreducible rational representations of the classical algebraic groups over fields of odd characteristic are found. These polynomials have the form $(t-1)^d$ and hence are completely determined by their degrees. In positive characteristic the degree of such polynomial cannot exceed the order of a relevant element. It occurs that for each unipotent element the degree of its minimal polynomial in an irreducible representation is equal to the order of this element provided the highest weight of the representation is large enough with respect to the ground field characteristic. On the other hand, classes of unipotent elements for whi...
In 2003, Kechris, Pestov and Todorcevic showed that the structure of certain separable metric spaces--called ultrahomogeneous--is closely related to the combinatorial behavior of the class of their finite metric spaces. The purpose of the present paper is to explore different aspects of this connection.
The author proves that every semisimple Hopf algebra of dimension less than $60$ over an algebraically closed field $k$ of characteristic zero is either upper or lower semisolvable up to a cocycle twist.
In this the authors obtain an isoperimetric characterization of relatively hyperbolicity of a groups with respect to a collection of subgroups. This allows them to apply classical combinatorial methods related to van Kampen diagrams to obtain relative analogues of some well-known algebraic and geometric properties of ordinary hyperbolic groups. There is also an introduction and study of the notion of a relatively quasi-convex subgroup of a relatively hyperbolic group and solve somenatural algorithmic problems.
Presents a general study of the convergence problem and intends to prove several fresh results and improve a number of old results in the field. This title studies the case when the nk are random and investigates the discrepancy the sequence (nkx) mod 1.
There are two approaches to projective representation theory of symmetric and alternating groups, which are powerful enough to work for modular representations. One is based on Sergeev duality, which connects projective representation theory of the symmetric group and representation theory of the algebraic supergroup $Q(n)$ via appropriate Schur (super)algebras and Schur functors. The second approach follows the work of Grojnowski for classical affine and cyclotomic Hecke algebras and connects projective representation theory of symmetric groups in characteristic $p$ to the crystal graph of the basic module of the twisted affine Kac-Moody algebra of type $A_{p-1}^{(2)}$. The goal of this work is to connect the two approaches mentioned above and to obtain new branching results for projective representations of symmetric groups.
Aims to introduce the reader to various forms of the maximum principle, starting from its classical formulation up to generalizations of the Omori-Yau maximum principle at infinity obtained by the authors.