You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume presents several multidisciplinary approaches to the visual representation of data acquired from experiments. As an expansion of these approaches, it is also possible to include data examination generated by mathematical-physical modeling. Imaging Systems encompass any subject related to digital images, from fundamental requirements for a correct image acquisition to computational algorithms that make it possible to obtain relevant information for image analysis. In this context, the book presents selected contributions of a special session at the Conference on Advanced Computational Engineering and Experimenting (ACE-X) 2016.
Various aerodynamics, structural dynamics, and control design and experimental studies are presented with the aim of advancing green and morphing aircraft research. The results obtained with an in-house CFD code are compared and validated with those of two NASA codes. The aerodynamical model of the UAS-S45 morphing wing as well as the structural model of a morphing winglet are presented. A new design methodology for oleo-pneumatic landing gear drop impact dynamics is presented as well as its experimental validation. The design of a nonlinear dynamic inversion (NDI)-based disturbance rejection control on a tailless aircraft is presented, including its validation using wind tunnel tests.
None
Introduction to Avionic Systems, Second Edition explains the principles and theory of modern avionic systems and how they are implemented with current technology for both civil and military aircraft. The systems are analysed mathematically, where appropriate, so that the design and performance can be understood. The book covers displays and man-machine interaction, aerodynamics and aircraft control, fly-by-wire flight control, inertial sensors and attitude derivation, navigation systems, air data and air data systems, autopilots and flight management systems, avionic systems integration and unmanned air vehicles. About the Author. Dick Collinson has had "hands-on" experience of most of the systems covered in this book and, as Manager of the Flight Automation Research Laboratory of GEC-Marconi Avionics Ltd. (now part of BAE Systems Ltd.), led the avionics research activities for the company at Rochester, Kent for many years. He was awarded the Silver Medal of the Royal Aeronautical Society in 1989 for his contribution to avionic systems research and development.
Data Structures & Theory of Computation
None
The global increase in air travel will require commercial vehicles to be more efficient than ever before. Advanced engine hot section materials are a key technology required to keep fuel consumption and emission to a minimum in next-generation gas turbines. Ceramic matrix composites (CMCs) are the most promising material to revolutionize gas turbine hot section materials technology because of their excellent high‐temperature properties. Rapid surface recession due to volatilization by water vapor is the Achilles heel of CMCs. Environmental barrier coatings (EBCs) is an enabling technology for CMCs, since it protects CMCs from water vapor. The first CMC component entered into service in 201...
Roving vigilantes, fear-mongering politicians, hysterical pundits, and the looming shadow of a seven hundred-mile-long fence: the US–Mexican border is one of the most complex and dynamic areas on the planet today. Hyperborder provides the most nuanced portrait yet of this dynamic region. Author Fernando Romero presents a multidisciplinary perspective informed by interviews with numerous academics, researchers, and organizations. Provocatively designed in the style of other kinetic large-scale studies like Rem Koolhaas's Content and Bruce Mau’s Massive Change, Hyperborder is an exhaustively researched report from the front lines of the border debate.
Sustainable horticulture is gaining increasing attention in the field of agriculture as demand for the food production rises to the world community. Sustainable horticultural systems are based on ecological principles to farm, optimizes pest and disease management approaches through environmentally friendly and renewable strategies in production agriculture. It is a discipline that addresses current issues such as food security, water pollution, soil health, pest control, and biodiversity depletion. Novel, environmentally-friendly solutions are proposed based on integrated knowledge from sciences as diverse as agronomy, soil science, entomology, ecology, chemistry and food sciences. Sustainable horticulture interprets methods and processes in the farming system to the global level. For that, horticulturists use the system approach that involves studying components and interactions of a whole system to address scientific, economic and social issues. In that respect, sustainable horticulture is not a classical, narrow science. Instead of solving problems using the classical painkiller approach that treats only negative impacts, sustainable horticulture treats problem sources.