You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book offers expert guidance on materials for total hip arthroplasty (THA), providing readers with quick access to well-organized summaries on biomaterials such as metals, ceramics, polymers, and composites. It also includes in-depth coverage of biocompatibility and implant problems such as necrosis, ulceration, high toxicity with metals, and allergic reactions. Coverage also emphasizes the mechanical properties of the materials used for prostheses applications, immunity to corrosion, enhanced biocompatibility, complete inertness to the body environment, and the high capacity to join with the bone and other tissues. Performance of Metals and Ceramics in Total Hip Arthroplasty is an essential reference for engineers and scientists specializing in prostheses design and manufacturing and orthopedic medical professionals. The book can also be used as a study guide for materials science and orthopedics students.
Biologically functional ceramic materials have been known about for several decades, like phosphate cements and gypsum, and they are within the zeroth generation. Modern and artificially synthesized bioceramics include amorphous materials in the Bioglass® family that were developed in the early 1970's and derivative glass ceramics such as Bioverit® and Cerabone A-W® that came in 1980's. They are from the 2nd generation of materials, and mostly applicable to bone replacement or bone defect fillers. Since the late 1990's, newer technologies have been introduced to the biologically functional material fields; they are the syntheses of organic-inorganic hybrids of micro- and macroscopic scale...
This is the second edition of the classic book An Introduction to Bioceramics which provides a comprehensive overview of all types of ceramic and glass materials that are used in medicine and dentistry. The enormous growth of the field of bioceramics is due to the recognition by the medical and dental community of the importance of bioactive materials to stimulate repair and regeneration of tissues. This edition includes 21 new chapters that document the science and especially the clinical applications of the new generation of bioceramics in the field of tissue regeneration and repair. Important socioeconomic factors influencing the economics and availability of new medical treatments are co...
This handbook describes several current trends in the development of bioceramics and biocomposites for clinical use in the repair, remodelling, and regeneration of bone tissue. Comprehensive coverage of these materials allows fundamental aspects of the science and engineering to be seen in close relation to the clinical performance of dental and orthopaedic implants. Bioceramics and biocomposites appear to be the most dynamic area of materials development for both tissue engineering and implantable medical devices. Almost all medical specialties will continue to benefit from these developments, but especially dentistry and orthopaedics. In this Handbook, leading researchers describe the use ...
Emphasizes the important scientific principles and basic information necessary for successful treatment of patients with severely damaged joints. Comprehensive, up-to-date coverage of all major joint replacement procedures, including both the science and practice of total joint replacement.
Provides comprehensive coverage of the research into and clinical uses of bioceramics and biocomposites Developments related to bioceramics and biocomposites appear to be one the most dynamic areas in the field of biomaterials, with multiple applications in tissue engineering and medical devices. This book covers the basic science and engineering of bioceramics and biocomposites for applications in dentistry and orthopedics, as well as the state-of-the-art aspects of biofabrication techniques, tissue engineering, remodeling, and regeneration of bone tissue. It also provides insight into the use of bionanomaterials to create new functionalities when interfaced with biological molecules or str...
This book reviews the current understanding of the mechanical, chemical and biological processes that are responsible for the degradation of a variety of implant materials. All 18 chapters will be written by internationally renowned experts to address both fundamental and practical aspects of research into the field. Different failure mechanisms such as corrosion, fatigue, and wear will be reviewed, together with experimental techniques for monitoring them, either in vitro or in vivo. Procedures for implant retrieval and analysis will be presented. A variety of biomaterials (stainless steels, titanium and its alloys, nitinol, magnesium alloys, polyethylene, biodegradable polymers, silicone gel, hydrogels, calcium phosphates) and medical devices (orthopedic and dental implants, stents, heart valves, breast implants) will be analyzed in detail. The book will serve as a broad reference source for graduate students and researchers studying biomedicine, corrosion, surface science, and electrochemistry.
The purpose of this book was to offer an overview of recent insights into the current state of arthroplasty. The tremendous long term success of Sir Charnley's total hip arthroplasty has encouraged many researchers to treat pain, improve function and create solutions for higher quality of life. Indeed and as described in a special chapter of this book, arthroplasty is an emerging field in the joints of upper extremity and spine. However, there are inborn complications in any foreign design brought to the human body. First, in the chapter on infections we endeavor to provide a comprehensive, up-to-date analysis and description of the management of this difficult problem. Second, the immune system is faced with a strange material coming in huge amounts of micro-particles from the tribology code. Therefore, great attention to the problem of aseptic loosening has been addressed in special chapters on loosening and on materials currently available for arthroplasty.