You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book offers an introduction to some combinatorial (also, set-theoretical) approaches and methods in geometry of the Euclidean space Rm. The topics discussed in the manuscript are due to the field of combinatorial and convex geometry. The author’s primary intention is to discuss those themes of Euclidean geometry which might be of interest to a sufficiently wide audience of potential readers. Accordingly, the material is explained in a simple and elementary form completely accessible to the college and university students. At the same time, the author reveals profound interactions between various facts and statements from different areas of mathematics: the theory of convex sets, finit...
This book highlights various topics on measure theory and vividly demonstrates that the different questions of this theory are closely connected with the central measure extension problem. Several important aspects of the measure extension problem are considered separately: set-theoretical, topological and algebraic. Also, various combinations (e.g., algebraic-topological) of these aspects are discussed by stressing their specific features. Several new methods are presented for solving the above mentioned problem in concrete situations. In particular, the following new results are obtained: the measure extension problem is completely solved for invariant or quasi-invariant measures on solvab...
The book is devoted to various constructions of sets which are nonmeasurable with respect to invariant (more generally, quasi-invariant) measures. Our starting point is the classical Vitali theorem stating the existence of subsets of the real line which are not measurable in the Lebesgue sense. This theorem stimulated the development of the following interesting topics in mathematics:1. Paradoxical decompositions of sets in finite-dimensional Euclidean spaces;2. The theory of non-real-valued-measurable cardinals;3. The theory of invariant (quasi-invariant)extensions of invariant (quasi-invariant) measures.These topics are under consideration in the book. The role of nonmeasurable sets (funct...
This book offers an introduction to some combinatorial (also, set-theoretical) approaches and methods in geometry of the Euclidean space Rm. The topics discussed in the manuscript are due to the field of combinatorial and convex geometry. The author’s primary intention is to discuss those themes of Euclidean geometry which might be of interest to a sufficiently wide audience of potential readers. Accordingly, the material is explained in a simple and elementary form completely accessible to the college and university students. At the same time, the author reveals profound interactions between various facts and statements from different areas of mathematics: the theory of convex sets, finit...
Iterative Optimization in Inverse Problems brings together a number of important iterative algorithms for medical imaging, optimization, and statistical estimation. It incorporates recent work that has not appeared in other books and draws on the author’s considerable research in the field, including his recently developed class of SUMMA algorithms. Related to sequential unconstrained minimization methods, the SUMMA class includes a wide range of iterative algorithms well known to researchers in various areas, such as statistics and image processing. Organizing the topics from general to more specific, the book first gives an overview of sequential optimization, the subclasses of auxiliary...
This book aims to put strong reasonable mathematical senses in notions of objectivity and subjectivity for consistent estimations in a Polish group by using the concept of Haar null sets in the corresponding group. This new approach – naturally dividing the class of all consistent estimates of an unknown parameter in a Polish group into disjoint classes of subjective and objective estimates – helps the reader to clarify some conjectures arising in the criticism of null hypothesis significance testing. The book also acquaints readers with the theory of infinite-dimensional Monte Carlo integration recently developed for estimation of the value of infinite-dimensional Riemann integrals over infinite-dimensional rectangles. The book is addressed both to graduate students and to researchers active in the fields of analysis, measure theory, and mathematical statistics.
Difference Equations: Theory, Applications and Advanced Topics, Third Edition provides a broad introduction to the mathematics of difference equations and some of their applications. Many worked examples illustrate how to calculate both exact and approximate solutions to special classes of difference equations. Along with adding several advanced to
Signal Processing: A Mathematical Approach is designed to show how many of the mathematical tools the reader knows can be used to understand and employ signal processing techniques in an applied environment. Assuming an advanced undergraduate- or graduate-level understanding of mathematics—including familiarity with Fourier series, matrices, probability, and statistics—this Second Edition: Contains new chapters on convolution and the vector DFT, plane-wave propagation, and the BLUE and Kalman filters Expands the material on Fourier analysis to three new chapters to provide additional background information Presents real-world examples of applications that demonstrate how mathematics is u...
A Complete Treatment of Current Research Topics in Fourier Transforms and Sinusoids Sinusoids: Theory and Technological Applications explains how sinusoids and Fourier transforms are used in a variety of application areas, including signal processing, GPS, optics, x-ray crystallography, radioastronomy, poetry and music as sound waves, and the medic
A Guide to the Evaluation of Integrals Special Integrals of Gradshetyn and Ryzhik: The Proofs provides self-contained proofs of a variety of entries in the frequently used table of integrals by I.S. Gradshteyn and I.M. Ryzhik. The book gives the most elementary arguments possible and uses Mathematica® to verify the formulas. Readers discover the beauty, patterns, and unexpected connections behind the formulas. Volume I collects 15 papers from Revista Scientia covering logarithmic integrals, the gamma function, trigonometric integrals, the beta function, the digamma function, the incomplete beta function, Frullani integrals, and various combinations. The book presents entries without indicating the range of parameters for their validity, encouraging readers to determine this range themselves. Many entries have a variety of proofs that can be evaluated using a symbolic language or point to the development of a new algorithm.