You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book contains advances on the theory and applications of time-delay systems with particular focus on interconnected systems. The methods for stability analysis and control design are based on time-domain and frequency-domain approaches, for continuous-time and sampled-data systems, linear and nonlinear systems. This volume is a valuable source of reference for control practitioners, graduate students, and scientists researching practical as well as theoretical solutions to a variety of control problems inevitably influenced by the presence of time delays. The contents are organized in three parts: Interconnected Systems analysis, Modeling and and Analysis for Delay systems, and Stabilization and Control Strategies for Delay Systems. This volume presents a selection of 19 contributions presented in the 4th DelSys Workshop which took place in Gif-sur-Yvette, France November 25-27, 2015.
This edited monograph includes state-of-the-art contributions on continuous time dynamical networks with delays. The book is divided into four parts. The first part presents tools and methods for the analysis of time-delay systems with a particular attention on control problems of large scale or infinite-dimensional systems with delays. The second part of the book is dedicated to the use of time-delay models for the analysis and design of Networked Control Systems. The third part of the book focuses on the analysis and design of systems with asynchronous sampling intervals which occur in Networked Control Systems. The last part of the book exposes several contributions dealing with the design of cooperative control and observation laws for networked control systems. The target audience primarily comprises researchers and experts in the field of control theory, but the book may also be beneficial for graduate students.
This volume is the first of the new series Advances in Dynamics and Delays. It offers the latest advances in the research of analyzing and controlling dynamical systems with delays, which arise in many real-world problems. The contributions in this series are a collection across various disciplines, encompassing engineering, physics, biology, and economics, and some are extensions of those presented at the IFAC (International Federation of Automatic Control) conferences since 2011. The series is categorized in five parts covering the main themes of the contributions: · Stability Analysis and Control Design · Networks and Graphs · Time Delay and Sampled-Data Systems · Computational and Software Tools · Applications This volume will become a good reference point for researchers and PhD students in the field of delay systems, and for those willing to learn more about the field, and it will also be a resource for control engineers, who will find innovative control methodologies for relevant applications, from both theory and numerical analysis perspectives.
The proposed book presents recent breakthroughs for the control of distributed parameter systems and follows on from a workshop devoted to this topic. It introduces new and unified visions of the challenging control problems raised by distributed parameter systems. The book collects contributions written by prominent international experts in the control community, addressing a wide variety of topics. It spans the full range from theoretical research to practical implementation and follows three traverse axes: emerging ideas in terms of control strategies (energy shaping, prediction-based control, numerical control, input saturation), theoretical concepts for interconnected systems (with potential non-linear actuation dynamics), advanced applications (cable-operated elevators, traffic networks), and numerical aspects. Cutting-edge experts in the field contributed in this volume, making it a valuable reference source for control practitioners, graduate students, and scientists researching practical and theoretical solutions to the challenging problems raised by distributed parameter systems.
This volume is concerned with the control and dynamics of time delay systems; a research field with at least six-decade long history that has been very active especially in the past two decades. In parallel to the new challenges emerging from engineering, physics, mathematics, and economics, the volume covers several new directions including topology induced stability, large-scale interconnected systems, roles of networks in stability, and new trends in predictor-based control and consensus dynamics. The associated applications/problems are described by highly complex models, and require solving inverse problems as well as the development of new theories, mathematical tools, numerically-tractable algorithms for real-time control. The volume, which is targeted to present these developments in this rapidly evolving field, captures a careful selection of the most recent papers contributed by experts and collected under five parts: (i) Methodology: From Retarded to Neutral Continuous Delay Models, (ii) Systems, Signals and Applications, (iii): Numerical Methods, (iv) Predictor-based Control and Compensation, and (v) Networked Control Systems and Multi-agent Systems.
Time delays are present in many physical processes due to the period of time it takes for the events to occur. Delays are particularly more pronounced in networks of interconnected systems, such as supply chains and systems controlled over c- munication networks. In these control problems, taking the delays into account is particularly important for performance evaluation and control system’s design. It has been shown, indeed, that delays in a controlled system (for instance, a c- munication delay for data acquisition) may have an “ambiguous” nature: they may stabilize the system, or, in the contrary,they may lead to deteriorationof the clos- loop performance or even instability, depen...
The first volume of the Advances in Robotics and Automatic Control: Reviews, Book Series started by IFSA Publishing in 2018 contains ten chapters written by 32 contributors from 9 countries: Belgium, China, Germany, India, Ireland, Japan, Serbia, Tunisia and USA. We hope that readers will enjoy this book and it can be a valuable tool for those who involved in research and development of various robots and automatic control systems.
Time-delays are fundamental to understand phenomena in control applications as networked systems, traffic management, control of vibrations, and supply chains. The need for a performance and reliability on these systems has to overcome challenges related to the constraints in the controlled systems. These constraints can be physical, such as input magnitude saturation on actuators, or technological, such as the limited bandwidth in a networked system or the fixed structure in a control architecture, where only a few parameters can be set. This volume provides a wide-ranging collection of methods for the analysis and design of control laws for delay systems with constraints. These methods cover fundamental analytical aspects as, for instance, the stability analysis of Positive Delay systems or the achievable performance of PID controls for delay systems. The book gives valuable material for researchers and graduate students in Automatic Control.
This book provides an update of the latest research in control of time delay systems and applications by world leading experts. It will appeal to engineers, researchers and students in Control.
Networked Control Systems (NCS) is a growing field of application and calls for the development of integrated approaches requiring multidisciplinary skills in control, real-time computing and communication protocols. This book describes co-design approaches, and establishes the links between the QoC (Quality of Control) and QoS (Quality of Service) of the network and computing resources. The methods and tools described in this book take into account, at design level, various parameters and properties that must be satisfied by systems controlled through a network. Among the important network properties examined are the QoC, the dependability of the system, and the feasibility of the real-time scheduling of tasks and messages. Correct exploitation of these approaches allows for efficient design, diagnosis, and implementation of the NCS. This book will be of great interest to researchers and advanced students in automatic control, real-time computing, and networking domains, and to engineers tasked with development of NCS, as well as those working in related network design and engineering fields.