Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Algebraic Number Fields
  • Language: en
  • Pages: 292

Algebraic Number Fields

The book is directed toward students with a minimal background who want to learn class field theory for number fields. The only prerequisite for reading it is some elementary Galois theory. The first three chapters lay out the necessary background in number fields, such as the arithmetic of fields, Dedekind domains, and valuations. The next two chapters discuss class field theory for number fields. The concluding chapter serves as an illustration of the concepts introduced in previous chapters. In particular, some interesting calculations with quadratic fields show the use of the norm residue symbol. For the second edition the author added some new material, expanded many proofs, and correct...

Algebraic Function Fields and Codes
  • Language: en
  • Pages: 360

Algebraic Function Fields and Codes

This book links two subjects: algebraic geometry and coding theory. It uses a novel approach based on the theory of algebraic function fields. Coverage includes the Riemann-Rock theorem, zeta functions and Hasse-Weil's theorem as well as Goppa' s algebraic-geometric codes and other traditional codes. It will be useful to researchers in algebraic geometry and coding theory and computer scientists and engineers in information transmission.

The Theory of Algebraic Number Fields
  • Language: en
  • Pages: 360

The Theory of Algebraic Number Fields

A translation of Hilberts "Theorie der algebraischen Zahlkörper" best known as the "Zahlbericht", first published in 1897, in which he provides an elegantly integrated overview of the development of algebraic number theory up to the end of the nineteenth century. The Zahlbericht also provided a firm foundation for further research in the theory, and can be seen as the starting point for all twentieth century investigations into the subject, as well as reciprocity laws and class field theory. This English edition further contains an introduction by F. Lemmermeyer and N. Schappacher.

The Genus Fields of Algebraic Number Fields
  • Language: en
  • Pages: 123

The Genus Fields of Algebraic Number Fields

  • Type: Book
  • -
  • Published: 2006-12-08
  • -
  • Publisher: Springer

a

Algebraic Number Fields
  • Language: en
  • Pages: 724

Algebraic Number Fields

  • Type: Book
  • -
  • Published: 1977
  • -
  • Publisher: Unknown

None

Topics in the Theory of Algebraic Function Fields
  • Language: en
  • Pages: 658

Topics in the Theory of Algebraic Function Fields

The fields of algebraic functions of one variable appear in several areas of mathematics: complex analysis, algebraic geometry, and number theory. This text adopts the latter perspective by applying an arithmetic-algebraic viewpoint to the study of function fields as part of the algebraic theory of numbers. The examination explains both the similarities and fundamental differences between function fields and number fields, including many exercises and examples to enhance understanding and motivate further study. The only prerequisites are a basic knowledge of field theory, complex analysis, and some commutative algebra.

Infinite Algebraic Extensions of Finite Fields
  • Language: en
  • Pages: 126

Infinite Algebraic Extensions of Finite Fields

Over the last several decades there has been a renewed interest in finite field theory, partly as a result of important applications in a number of diverse areas such as electronic communications, coding theory, combinatorics, designs, finite geometries, cryptography, and other portions of discrete mathematics. In addition, a number of recent books have been devoted to the subject. Despite the resurgence in interest, it is not widely known that many results concerning finite fields have natural generalizations to abritrary algebraic extensions of finite fields. The purpose of this book is to describe these generalizations. After an introductory chapter surveying pertinent results about finit...

The Theory of Algebraic Number Fields
  • Language: en
  • Pages: 402

The Theory of Algebraic Number Fields

A translation of Hilberts "Theorie der algebraischen Zahlkörper" best known as the "Zahlbericht", first published in 1897, in which he provides an elegantly integrated overview of the development of algebraic number theory up to the end of the nineteenth century. The Zahlbericht also provided a firm foundation for further research in the theory, and can be seen as the starting point for all twentieth century investigations into the subject, as well as reciprocity laws and class field theory. This English edition further contains an introduction by F. Lemmermeyer and N. Schappacher.

A Classical Invitation to Algebraic Numbers and Class Fields
  • Language: en
  • Pages: 344

A Classical Invitation to Algebraic Numbers and Class Fields

"Artin's 1932 Göttingen Lectures on Class Field Theory" and "Connections between Algebrac Number Theory and Integral Matrices"

A Survey Of Trace Forms Of Algebraic Number Fields
  • Language: en
  • Pages: 328

A Survey Of Trace Forms Of Algebraic Number Fields

Every finite separable field extension F/K carries a canonical inner product, given by trace(xy). This symmetric K-bilinear form is the trace form of F/K.When F is an algebraic number field and K is the field Q of rational numbers, the trace form goes back at least 100 years to Hermite and Sylvester. These notes present the first systematic treatment of the trace form as an object in its own right. Chapter I discusses the trace form of F/Q up to Witt equivalence in the Witt ring W(Q). Special attention is paid to the Witt classes arising from normal extensions F/Q. Chapter II contains a detailed analysis of trace forms over p-adic fields. These local results are applied in Chapter III to pro...