Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Principles of Algebraic Geometry
  • Language: en
  • Pages: 837

Principles of Algebraic Geometry

A comprehensive, self-contained treatment presenting general results of the theory. Establishes a geometric intuition and a working facility with specific geometric practices. Emphasizes applications through the study of interesting examples and the development of computational tools. Coverage ranges from analytic to geometric. Treats basic techniques and results of complex manifold theory, focusing on results applicable to projective varieties, and includes discussion of the theory of Riemann surfaces and algebraic curves, algebraic surfaces and the quadric line complex as well as special topics in complex manifolds.

Algebraic Geometry
  • Language: en
  • Pages: 520

Algebraic Geometry

This book provides an introduction to abstract algebraic geometry. It includes more than 400 exercises that offer specific examples as well as more specialized topics. From the reviews: "Enables the reader to make the drastic transition between the basic, intuitive questions about affine and projective varieties with which the subject begins, and the elaborate general methodology of schemes and cohomology employed currently to answer these questions." --MATHEMATICAL REVIEWS

Algebraic Geometry
  • Language: en
  • Pages: 250

Algebraic Geometry

This text for advanced undergraduate students is both an introduction to algebraic geometry and a bridge between its two parts--the analytical-topological and the algebraic. Because of its extensive use of formal power series (power series without convergency), the treatment will appeal to readers conversant with analysis but less familiar with the formidable techniques of modern algebra. The book opens with an overview of the results required from algebra and proceeds to the fundamental concepts of the general theory of algebraic varieties: general point, dimension, function field, rational transformations, and correspondences. A concentrated chapter on formal power series with applications to algebraic varieties follows. An extensive survey of algebraic curves includes places, linear series, abelian differentials, and algebraic correspondences. The text concludes with an examination of systems of curves on a surface.

Rudiments of Algebraic Geometry
  • Language: en
  • Pages: 115

Rudiments of Algebraic Geometry

Aimed at advanced undergraduate students of mathematics, this concise text covers the basics of algebraic geometry. Topics include affine spaces, projective spaces, rational curves, algebraic sets with group structure, more. 1963 edition.

Algebraic Geometry
  • Language: en
  • Pages: 268

Algebraic Geometry

Students often find, in setting out to study algebraic geometry, that most of the serious textbooks on the subject require knowledge of ring theory, field theory, local rings, and transcendental field extensions, and even sheaf theory. Often the expected background goes well beyond college mathematics. This book, aimed at senior undergraduates and graduate students, grew out of Miyanishi's attempt to lead students to an understanding of algebraic surfaces while presenting thenecessary background along the way. Originally published in Japanese in 1990, it presents a self-contained introduction to the fundamentals of algebraic geometry. This book begins with background on commutative algebras, sheaf theory, and related cohomology theory. The next part introduces schemes andalgebraic varieties, the basic language of algebraic geometry. The last section brings readers to a point at which they can start to learn about the classification of algebraic surfaces.

A Royal Road to Algebraic Geometry
  • Language: en
  • Pages: 365

A Royal Road to Algebraic Geometry

This book is about modern algebraic geometry. The title A Royal Road to Algebraic Geometry is inspired by the famous anecdote about the king asking Euclid if there really existed no simpler way for learning geometry, than to read all of his work Elements. Euclid is said to have answered: “There is no royal road to geometry!” The book starts by explaining this enigmatic answer, the aim of the book being to argue that indeed, in some sense there is a royal road to algebraic geometry. From a point of departure in algebraic curves, the exposition moves on to the present shape of the field, culminating with Alexander Grothendieck’s theory of schemes. Contemporary homological tools are explained. The reader will follow a directed path leading up to the main elements of modern algebraic geometry. When the road is completed, the reader is empowered to start navigating in this immense field, and to open up the door to a wonderful field of research. The greatest scientific experience of a lifetime!

An Introduction to Algebraic Geometry and Algebraic Groups
  • Language: en
  • Pages: 321

An Introduction to Algebraic Geometry and Algebraic Groups

An accessible text introducing algebraic groups at advanced undergraduate and early graduate level, this book covers the conjugacy of Borel subgroups and maximal tori, the theory of algebraic groups with a BN-pair, Frobenius maps on affine varieties and algebraic groups, zeta functions and Lefschetz numbers for varieties over finite fields.

Introduction to Algebraic Geometry
  • Language: en
  • Pages: 363

Introduction to Algebraic Geometry

Originally published in 1950, this textbook studies projective geometry and provides a solid introduction to similar studies in space of more than two dimensions.

Real Algebraic Geometry
  • Language: en
  • Pages: 429

Real Algebraic Geometry

The present volume is a translation, revision and updating of our book (pub lished in French) with the title "Geometrie Algebrique Reelle". Since its pub lication in 1987 the theory has made advances in several directions. There have also been new insights into material already in the French edition. Many of these advances and insights have been incorporated in this English version of the book, so that it may be viewed as being substantially different from the original. We wish to thank Michael Buchner for his careful reading of the text and for his linguistic corrections and stylistic improvements. The initial Jb. TEiX file was prepared by Thierry van Effelterre. The three authors participa...

Introduction to Algebraic Geometry
  • Language: en
  • Pages: 498

Introduction to Algebraic Geometry

This book presents a readable and accessible introductory course in algebraic geometry, with most of the fundamental classical results presented with complete proofs. An emphasis is placed on developing connections between geometric and algebraic aspects of the theory. Differences between the theory in characteristic and positive characteristic are emphasized. The basic tools of classical and modern algebraic geometry are introduced, including varieties, schemes, singularities, sheaves, sheaf cohomology, and intersection theory. Basic classical results on curves and surfaces are proved. More advanced topics such as ramification theory, Zariski's main theorem, and Bertini's theorems for general linear systems are presented, with proofs, in the final chapters. With more than 200 exercises, the book is an excellent resource for teaching and learning introductory algebraic geometry.