You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Discrete-Time Neural Observers: Analysis and Applications presents recent advances in the theory of neural state estimation for discrete-time unknown nonlinear systems with multiple inputs and outputs. The book includes rigorous mathematical analyses, based on the Lyapunov approach, that guarantee their properties. In addition, for each chapter, simulation results are included to verify the successful performance of the corresponding proposed schemes. In order to complete the treatment of these schemes, the authors also present simulation and experimental results related to their application in meaningful areas, such as electric three phase induction motors and anaerobic process, which show ...
Neural networks have become a well-established methodology as exempli?ed by their applications to identi?cation and control of general nonlinear and complex systems; the use of high order neural networks for modeling and learning has recently increased. Usingneuralnetworks,controlalgorithmscanbedevelopedtoberobustto uncertainties and modeling errors. The most used NN structures are Feedf- ward networks and Recurrent networks. The latter type o?ers a better suited tool to model and control of nonlinear systems. There exist di?erent training algorithms for neural networks, which, h- ever, normally encounter some technical problems such as local minima, slow learning, and high sensitivity to in...
Neural networks have become a well-established methodology as exempli?ed by their applications to identi?cation and control of general nonlinear and complex systems; the use of high order neural networks for modeling and learning has recently increased. Usingneuralnetworks,controlalgorithmscanbedevelopedtoberobustto uncertainties and modeling errors. The most used NN structures are Feedf- ward networks and Recurrent networks. The latter type o?ers a better suited tool to model and control of nonlinear systems. There exist di?erent training algorithms for neural networks, which, h- ever, normally encounter some technical problems such as local minima, slow learning, and high sensitivity to in...
Neural Networks Modelling and Control: Applications for Unknown Nonlinear Delayed Systems in Discrete Time focuses on modeling and control of discrete-time unknown nonlinear delayed systems under uncertainties based on Artificial Neural Networks. First, a Recurrent High Order Neural Network (RHONN) is used to identify discrete-time unknown nonlinear delayed systems under uncertainties, then a RHONN is used to design neural observers for the same class of systems. Therefore, both neural models are used to synthesize controllers for trajectory tracking based on two methodologies: sliding mode control and Inverse Optimal Neural Control. As well as considering the different neural control models and complications that are associated with them, this book also analyzes potential applications, prototypes and future trends. - Provide in-depth analysis of neural control models and methodologies - Presents a comprehensive review of common problems in real-life neural network systems - Includes an analysis of potential applications, prototypes and future trends
Artificial Neural Networks for Engineering Applications presents current trends for the solution of complex engineering problems that cannot be solved through conventional methods. The proposed methodologies can be applied to modeling, pattern recognition, classification, forecasting, estimation, and more. Readers will find different methodologies to solve various problems, including complex nonlinear systems, cellular computational networks, waste water treatment, attack detection on cyber-physical systems, control of UAVs, biomechanical and biomedical systems, time series forecasting, biofuels, and more. Besides the real-time implementations, the book contains all the theory required to use the proposed methodologies for different applications.
This book comprises a selection of papers from IFSA 2007 on new methods and theories that contribute to the foundations of fuzzy logic and soft computing. Coverage includes the application of fuzzy logic and soft computing in flexible querying, philosophical and human-scientific aspects of soft computing, search engine and information processing and retrieval, as well as intelligent agents and knowledge ant colony.
This book highlights the recent research on soft computing, pattern recognition, nature-inspired computing, and their various practical applications. It presents 69 selected papers from the 14th International Conference on Soft Computing and Pattern Recognition (SoCPaR 2022) and 19 papers from the 14th World Congress on Nature and Biologically Inspired Computing (NaBIC 2022), which was held online, from December 14 to 16, 2022. A premier conference in the field of soft computing, artificial intelligence, and machine learning applications, SoCPaR-NaBIC 2022 brought together researchers, engineers, and practitioners whose work involves intelligent systems, network security, and their applications in industry. Including contributions by authors from over 25 countries, the book offers a valuable reference guide for all researchers, students, and practitioners in the fields of computer science and engineering.
This book constitutes the refereed conference proceedings of the 24rd Iberoamerican Congress on Pattern Recognition, CIARP 2019, held in Havana, Cuba, in October 2019. The 70 papers presented were carefully reviewed and selected from 128 submissions. The papers are organized in topical sections named: Data Mining: Natural Language Processing and Text Mining; Image Analysis and Retrieval; Machine Learning and Neural Networks; Mathematical Theory of Pattern Recognition; Pattern Recognition and Applications; Signals Analysis and Processing; Speech Recognition; Video Analysis.
With the steady stream of new web based information technologies being introduced to organizations, the need for network and communication technologies to provide an easy integration of knowledge and information sharing is essential. Network and Communication Technology Innovations for Web and IT Advancement presents studies on trends, developments, and methods on information technology advancements through network and communication technology. This collection brings together integrated approaches for communication technology and usage for web and IT advancements.
"This book introduces Higher Order Neural Networks (HONNs) to computer scientists and computer engineers as an open box neural networks tool when compared to traditional artificial neural networks"--Provided by publisher.