You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Systems with sub-processes evolving on many different time scales are ubiquitous in applications: chemical reactions, electro-optical and neuro-biological systems, to name just a few. This volume contains papers that expose the state of the art in mathematical techniques for analyzing such systems. Recently developed geometric ideas are highlighted in this work that includes a theory of relaxation-oscillation phenomena in higher dimensional phase spaces. Subtle exponentially small effects result from singular perturbations implicit in certain multiple time scale systems. Their role in the slow motion of fronts, bifurcations, and jumping between invariant tori are all explored here. Neurobiology has played a particularly stimulating role in the development of these techniques and one paper is directed specifically at applying geometric singular perturbation theory to reveal the synchrony in networks of neural oscillators.
A survey of current knowledge about Hamiltonian systems with three or more degrees of freedom and related topics. The Hamiltonian systems appearing in most of the applications are non-integrable. Hence methods to prove non-integrability results are presented and the different meaning attributed to non-integrability are discussed. For systems near an integrable one, it can be shown that, under suitable conditions, some parts of the integrable structure, most of the invariant tori, survive. Many of the papers discuss near-integrable systems. From a topological point of view, some singularities must appear in different problems, either caustics, geodesics, moving wavefronts, etc. This is also r...
This volume is an outgrowth of the Third International Symposium on Hamiltonian Systems and Celestial Mechanics. The main topics are Arnold diffusion, central configurations, singularities in few-body problems, billiards, area-preserving maps, and geometrical mechanics. All papers in the volume went through the refereeing process typical of a mathematical research journal.
The articles collected in this volume represent the contributions presented at the IMA workshop on "Dynamics of Algorithms" which took place in November 1997. The workshop was an integral part of the 1997 -98 IMA program on "Emerging Applications of Dynamical Systems." The interaction between algorithms and dynamical systems is mutually beneficial since dynamical methods can be used to study algorithms that are applied repeatedly. Convergence, asymptotic rates are indeed dynamical properties. On the other hand, the study of dynamical systems benefits enormously from having efficient algorithms to compute dynamical objects.
The "Dynamical Systems Semester" took place at the Euler International Mathematical Institute in St. Petersburg, Russia, in the autumn of 1991. There were two workshops, October 14-25 and November 18-29, with more than 60 participants giving 70 talks. The titles of all talks are given at the end of this volume. Here we included 22 papers prepared by the authors especially for this volume, while the material of the other talks are published elsewhere. The semester was sponsored by the Soviet Academy of Sciences and UN ESCO. Since the new building of the Euler Institute was not ready at that moment, the sessions were held in the old building of the Steklov Mathemati cal Institute in the very center of St. Petersburg. Members of the staff of the Euler Institute were doing their best to organize properly the normal processing of the conference-not a simple task at that time because of the complications in the political and economical life in Russia just between the coup d'etat in August and the dismantling of the Soviet Union in December. We are thankful to all of them.
The third conference on “Symmetry and Perturbation Theory” (SPT2001) was attended by over 50 mathematicians, physicists and chemists. The proceedings present the advancement of research in this field — more precisely, in the different fields at whose crossroads symmetry and perturbation theory sit.
We prove a Harnack inequality for level sets of $p$-Laplace phase transition minimizers. In particular, if a level set is included in a flat cylinder, then, in the interior, it is included in a flatter one. The extension of a result conjectured by De Giorgi and recently proven by the third author for $p=2$ follows.
The goal of this text is to review recent advances and to present new results in the numerical analysis of the finite sections method for general band and band-dominated operators. The main topics are the stability of the finite sections method and the asymptotic behavior of singular values. The latter topic is closely related with compactness and Fredholm properties of approximation sequences, and the paper can also serve as an introduction into this remarkable field of numerical analysis. Further the author discusses the behavior of approximation numbers, determinants, essential spectra and essential pseudospectra as well as the localization of pseudomodes of finite sections of band-dominated operators.
This book contains some of the results presented at the mini-symposium titled Emerging Problems in the Homogenization of Partial Differential Equations, held during the ICIAM2019 conference in Valencia in July 2019. The papers cover a large range of topics, problems with weak regularity data involving renormalized solutions, eigenvalue problems for complicated shapes of the domain, homogenization of partial differential problems with strongly alternating boundary conditions of Robin type with large parameters, multiscale analysis of the potential action along a neuron with a myelinated axon, and multi-scale model of magnetorheological suspensions. The volume is addressed to scientists who deal with complex systems that presents several elements (characteristics, constituents...) of very different scales, very heterogeneous, and search for homogenized models providing an effective (macroscopic) description of their behaviors.
Fractal structures or geometries currently play a key role in all models for natural and industrial processes that exhibit the formation of rough surfaces and interfaces. Computer simulations, analytical theories and experiments have led to significant advances in modeling these phenomena across wild media. Many problems coming from engineering, physics or biology are characterized by both the presence of different temporal and spatial scales and the presence of contacts among different components through (irregular) interfaces that often connect media with different characteristics. This work is devoted to collecting new results on fractal applications in engineering from both theoretical and numerical perspectives. The book is addressed to researchers in the field.