You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This multi-authored volume presents selected papers from the Eighth Workshop on Dynamics and Control. Many of the papers represent significant advances in this area of research, and cover the development of control methods, including the control of dynamical systems subject to mixed constraints on both the control and state variables, and the development of a control design method for flexible manipulators with mismatched uncertainties. Advances in dynamic systems are presented, particularly in game-theoretic approaches and also the applications of dynamic systems methodology to social and environmental problems, for example, the concept of virtual biospheres in modeling climate change in terms of dynamical systems.
The book investigates stability theory in terms of two different measure, exhibiting the advantage of employing families of Lyapunov functions and treats the theory of a variety of inequalities, clearly bringing out the underlying theme. It also demonstrates manifestations of the general Lyapunov method, showing how this technique can be adapted to various apparently diverse nonlinear problems. Furthermore it discusses the application of theoretical results to several different models chosen from real world phenomena, furnishing data that is particularly relevant for practitioners. Stability Analysis of Nonlinear Systems is an invaluable single-sourse reference for industrial and applied mathematicians, statisticians, engineers, researchers in the applied sciences, and graduate students studying differential equations.
This monograph is a first in the world to present three approaches for stability analysis of solutions of dynamic equations. The first approach is based on the application of dynamic integral inequalities and the fundamental matrix of solutions of linear approximation of dynamic equations. The second is based on the generalization of the direct Lyapunovs method for equations on time scales, using scalar, vector and matrix-valued auxiliary functions. The third approach is the application of auxiliary functions (scalar, vector, or matrix-valued ones) in combination with differential dynamic inequalities. This is an alternative comparison method, developed for time continuous and time discrete ...
Weakly Connected Nonlinear Systems: Boundedness and Stability of Motion provides a systematic study on the boundedness and stability of weakly connected nonlinear systems, covering theory and applications previously unavailable in book form. It contains many essential results needed for carrying out research on nonlinear systems of weakly connected
This is the first book that deals with practical stability and its development. It presents a systematic study of the theory of practical stability in terms of two different measures and arbitrary sets and demonstrates the manifestations of general Lyapunov's method by showing how this effective technique can be adapted to investigate various apparently diverse nonlinear problems including control systems and multivalued differential equations.
None
The Separable Galois Theory of Commutative Rings, Second Edition provides a complete and self-contained account of the Galois theory of commutative rings from the viewpoint of categorical classification theorems and using solely the techniques of commutative algebra. Along with updating nearly every result and explanation, this edition contains a new chapter on the theory of separable algebras. The book develops the notion of commutative separable algebra over a given commutative ring and explains how to construct an equivalent category of profinite spaces on which a profinite groupoid acts. It explores how the connection between the categories depends on the construction of a suitable separable closure of the given ring, which in turn depends on certain notions in profinite topology. The book also discusses how to handle rings with infinitely many idempotents using profinite topological spaces and other methods.
Quadratic Irrationals: An Introduction to Classical Number Theory gives a unified treatment of the classical theory of quadratic irrationals. Presenting the material in a modern and elementary algebraic setting, the author focuses on equivalence, continued fractions, quadratic characters, quadratic orders, binary quadratic forms, and class groups.T
Classification of Lipschitz Mappings presents a systematic, self-contained treatment of a new classification of Lipschitz mappings and its application in many topics of metric fixed point theory. Suitable for readers interested in metric fixed point theory, differential equations, and dynamical systems, the book only requires a basic background in