You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A solid introduction to mathematical modeling for a range of chemical engineering applications, covering model formulation, simplification and validation. It explains how to describe a physical/chemical reality in mathematical language and how to select the type and degree of sophistication for a model. Model reduction and approximation methods are presented, including dimensional analysis, time constant analysis and asymptotic methods. An overview of solution methods for typical classes of models is given. As final steps in model building, parameter estimation and model validation and assessment are discussed. The reader is given hands-on experience of formulating new models, reducing the models and validating the models. The authors assume the knowledge of basic chemical engineering, in particular transport phenomena, as well as basic mathematics, statistics and programming. The accompanying problems, tutorials, and projects include model formulation at different levels, analysis, parameter estimation and numerical solution.
A solid introduction, enabling the reader to successfully formulate, construct, simplify, evaluate and use mathematical models in chemical engineering.
Engineering the physical, chemical, and energy properties of lignocellulosic biomass is important to produce high-quality consistent feedstocks with reduced variability for biofuels production. The emphasis of this book will be the beneficial impacts that mechanical, chemical, and thermal preprocessing methods can have on lignocellulosic biomass quality attributes or specifications for solid and liquid biofuels and biopower production technologies. "Preprocessing" refers to treatments that can occur at a distance from conversion and result in an intermediate with added value, with improved conversion performance and efficiency. This book explores the effects of mechanical, chemical, and ther...
One of the first applications of the modern Laplace transform was by Bateman in 1910 who used it to transform Rutherfords equations in his work on radioactive decay. The modeling of complex engineering and physical problems by linear differential equations has made the Laplace transform an indispensable mathematical tool for engineers and scientists. The method of Laplace transform for solving linear differential equations is very popular in the disciplines of electrical engineering, environmental engineering, hydrology, and petroleum engineering. This book presents some applications of Laplace transforms in these disciplines. Algorithms for the numerical inversion of Laplace transform are given, and a computer program in R for the Stehfest algorithm is included.
This fully revised and updated third edition of Pharmaceutical Inhalation Aerosol Technology encompasses the scientific and technical foundation for the rationale, design, componentry, assembly and quality performance metrics of therapeutic inhalers in their delivery of pharmaceutical aerosols to treat symptoms or the underlying causes of disease. It focuses on the importance of pharmaceutical engineering as a foundational element of all inhaler products and their application to pulmonary drug delivery. The expanded scope considers previously unaddressed aspects of pharmaceutical inhalation aerosol technology and the patient interface by including aerosol delivery, lung deposition and cleara...