Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

An Introduction to Semiclassical and Microlocal Analysis
  • Language: en
  • Pages: 193

An Introduction to Semiclassical and Microlocal Analysis

This book presents the techniques used in the microlocal treatment of semiclassical problems coming from quantum physics in a pedagogical, way and is mainly addressed to non-specialists in the subject. It is based on lectures taught by the author over several years, and includes many exercises providing outlines of useful applications of the semi-classical theory.

21 Bringing Down the House
  • Language: en
  • Pages: 355

21 Bringing Down the House

Recounts the story of how a notorious gang of MIT blackjack savants devised and received backing for a system for winning at the world's most sophisticated casinos, an endeavor that earned them more than three million dollars.

A Time Remembered, The Verden, Oklahoma Cemetery
  • Language: en
  • Pages: 334

A Time Remembered, The Verden, Oklahoma Cemetery

None

Advanced Complex Analysis
  • Language: en
  • Pages: 339

Advanced Complex Analysis

A Comprehensive Course in Analysis by Poincaré Prize winner Barry Simon is a five-volume set that can serve as a graduate-level analysis textbook with a lot of additional bonus information, including hundreds of problems and numerous notes that extend the text and provide important historical background. Depth and breadth of exposition make this set a valuable reference source for almost all areas of classical analysis. Part 2B provides a comprehensive look at a number of subjects of complex analysis not included in Part 2A. Presented in this volume are the theory of conformal metrics (including the Poincaré metric, the Ahlfors-Robinson proof of Picard's theorem, and Bell's proof of the Pa...

Operator Algebras for Multivariable Dynamics
  • Language: en
  • Pages: 68

Operator Algebras for Multivariable Dynamics

Let $X$ be a locally compact Hausdorff space with $n$ proper continuous self maps $\sigma_i:X \to X$ for $1 \le i \le n$. To this the authors associate two conjugacy operator algebras which emerge as the natural candidates for the universal algebra of the system, the tensor algebra $\mathcal{A}(X,\tau)$ and the semicrossed product $\mathrm{C}_0(X)\times_\tau\mathbb{F}_n^+$. They develop the necessary dilation theory for both models. In particular, they exhibit an explicit family of boundary representations which determine the C*-envelope of the tensor algebra.|Let $X$ be a locally compact Hausdorff space with $n$ proper continuous self maps $\sigma_i:X \to X$ for $1 \le i \le n$. To this the authors associate two conjugacy operator algebras which emerge as the natural candidates for the universal algebra of the system, the tensor algebra $\mathcal{A}(X,\tau)$ and the semicrossed product $\mathrm{C}_0(X)\times_\tau\mathbb{F}_n^+$. They develop the necessary dilation theory for both models. In particular, they exhibit an explicit family of boundary representations which determine the C*-envelope of the tensor algebra.

Invariant Representations of $\mathrm {GSp}(2)$ under Tensor Product with a Quadratic Character
  • Language: en
  • Pages: 185

Invariant Representations of $\mathrm {GSp}(2)$ under Tensor Product with a Quadratic Character

"Volume 204, number 957 (first of 5 numbers)."

Unitary Invariants in Multivariable Operator Theory
  • Language: en
  • Pages: 105

Unitary Invariants in Multivariable Operator Theory

This paper concerns unitary invariants for $n$-tuples $T:=(T_1,\ldots, T_n)$ of (not necessarily commuting) bounded linear operators on Hilbert spaces. The author introduces a notion of joint numerical radius and works out its basic properties. Multivariable versions of Berger's dilation theorem, Berger-Kato-Stampfli mapping theorem, and Schwarz's lemma from complex analysis are obtained. The author studies the joint (spatial) numerical range of $T$ in connection with several unitary invariants for $n$-tuples of operators such as: right joint spectrum, joint numerical radius, euclidean operator radius, and joint spectral radius. He also proves an analogue of Toeplitz-Hausdorff theorem on the convexity of the spatial numerical range of an operator on a Hilbert space, for the joint numerical range of operators in the noncommutative analytic Toeplitz algebra $F_n^\infty$.

Operator Theory
  • Language: en
  • Pages: 769

Operator Theory

A Comprehensive Course in Analysis by Poincaré Prize winner Barry Simon is a five-volume set that can serve as a graduate-level analysis textbook with a lot of additional bonus information, including hundreds of problems and numerous notes that extend the text and provide important historical background. Depth and breadth of exposition make this set a valuable reference source for almost all areas of classical analysis. Part 4 focuses on operator theory, especially on a Hilbert space. Central topics are the spectral theorem, the theory of trace class and Fredholm determinants, and the study of unbounded self-adjoint operators. There is also an introduction to the theory of orthogonal polynomials and a long chapter on Banach algebras, including the commutative and non-commutative Gel'fand-Naimark theorems and Fourier analysis on general locally compact abelian groups.

Composition Operators on Hardy-Orlicz Spaces
  • Language: en
  • Pages: 87

Composition Operators on Hardy-Orlicz Spaces

"The authors investigate composition operators on Hardy-Orlicz spaces when the Orlicz function Psi grows rapidly: compactness, weak compactness, to be p-summing, order bounded, ... , and show how these notions behave according to the growth of Psi. They introduce an adapted version of Carleson measure. They construct various examples showing that their results are essentially sharp. In the last part, they study the case of Bergman-Orlicz spaces."--Publisher's description.