You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
From science fiction to science laboratoriesDiscover the State of the Art in Photonic MetamaterialsMetamaterials-composite media with unusual optical properties-have revolutionized the landscape of optical science and engineering over the past decades. Metamaterials have transformed science-fiction-like concepts of superresolution imaging and optic
Metamaterials-by-Design: Theory, Technologies, and Vision is devoted to a comprehensive review of the latest advancements and current trends in the field of system-level-oriented metamaterial design methods, technologies, and future perspectives. Starting from the theoretical and methodological motivations of this research to macro-scale performance-driven design of volumetric and planar metamaterials, the book introduces advanced task-oriented modeling approaches, including specific reference to their multi-scale/ multi-physics customization in recent metamaterial science and engineering. In the introduction of these concepts, particular attention is paid to the illustration of the physical...
Ready to Wear: A Rhetoric of Wearable Computers and Reality-Shifting Media explores how and to what ends wearable inventions and technologies augment or remix reality, as well as the claims used to promote them. As computer components shrink and our mobile culture normalizes, we wear computers on the body to create immersive experiences.
Transformation electromagnetics is a systematic design technique for optical and electromagnetic devices that enables novel wave-material interaction properties. The associated metamaterials technology for designing and realizing optical and electromagnetic devices can control the behavior of light and electromagnetic waves in ways that have not been conventionally possible. The technique is credited with numerous novel device designs, most notably the invisibility cloaks, perfect lenses and a host of other remarkable devices. Transformation Electromagnetics and Metamaterials: Fundamental Principles and Applications presents a comprehensive treatment of the rapidly growing area of transforma...
Discover a comprehensive exploration of recent developments and fundamental concepts in the applications of metasurfaces. In Electromagnetic Metasurfaces: Theory and Applications, distinguished researchers and authors Karim Achouri and Christophe Caloz deliver an introduction to the fundamentals and applications of metasurfaces and an insightful analysis of recent and future developments in the field. The book describes the precursors and history of metasurfaces before continuing on to an exploration of the physical insights that can be gleaned from the material parameters of the metasurface. You’ll learn how to compute the fields scattered by a metasurface with known material parameters b...
The book Ferromagnetic Resonance - Theory and Applications highlights recent advances at the interface between the science and technology of nanostructures (bilayer-multilayers, nanowires, spinel type nanoparticles, photonic crystal, etc.). The electromagnetic resonance techniques have become a central field of modern scientific and technical activity. The modern technical applications of ferromagnetic resonance are in spintronics, electronics, space navigation, remote-control equipment, radio engineering, electronic computers, maritime, electrical engineering, instrument-making and geophysical methods of prospecting.
This consistent and systematic review of recent advances in optical antenna theory and practice brings together leading experts in the fields of electrical engineering, nano-optics and nano-photonics, physical chemistry and nanofabrication. Fundamental concepts and functionalities relevant to optical antennas are explained, together with key principles for optical antenna modelling, design and characterisation. Recognising the tremendous potential of this technology, practical applications are also outlined. Presenting a clear translation of the concepts of radio antenna design, near-field optics and field-enhanced spectroscopy into optical antennas, this interdisciplinary book is an indispensable resource for researchers and graduate students in engineering, optics and photonics, physics and chemistry.
About the book: This book is the first comprehensive review on acoustic metamaterials; novel materials which can manipulate sound waves in surprising ways, which include collimation, focusing, cloaking, sonic screening and extraordinary transmission. It covers both experimental and theoretical aspects of acoustic and elastic waves propagating in structured composites, with a focus on effective properties associated with negative refraction, lensing and cloaking. Most related books in the field address electromagnetic metamaterials and focus on numerical methods, and little (or no) experimental section. Each chapter will be authored by an acknowledged expert, amongst the topics covered will be experimental results on non-destructive imaging, cloaking by surface water waves, flexural waves in thin plates. Applications in medical ultrasound imaging and modeling of metamaterials will be emphasized too. The book can serve as a reference for researchers who wish to build a solid foundation of wave propagation in this class of novel materials.
Microwave and millimeter-wave (mm-wave) circuits and systems have been widely employed in various emerging technologies such as 5G and beyond wireless mobile communication systems, autonomous driving, electronic warfare, and radar systems. To better understand the benefits, challenges, and opportunities of this technology, further study is required. The Handbook of Research on Emerging Designs and Applications for Microwave and Millimeter Wave Circuits describes the latest advances in microwave and mm-wave applications and provides state-of-the-art research in the domain of microwave, mm-wave, and THz devices and systems. Covering key topics such as antennas, circuits, propagation, and energy harvesting, this major reference work is ideal for computer scientists, industry professionals, researchers, academicians, practitioners, scholars, instructors, and students.
Learn about the revolutionary new technology of negative-refractionmetamaterials Negative-Refraction Metamaterials: Fundamental Principles andApplications introduces artificial materials that support theunusual electromagnetic property of negative refraction. Readerswill discover several classes of negative-refraction materialsalong with their exciting, groundbreaking applications, such aslenses and antennas, imaging with super-resolution, microwavedevices, dispersion-compensating interconnects, radar, anddefense. The book begins with a chapter describing the fundamentals ofisotropic metamaterials in which a negative index of refraction isdefined. In the following chapters, the text builds o...