You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Connectivity has arrived in the vehicle - whether it is in-car internet or car-to-car communication. For the chassis too, the connected car is increasingly becoming a driver of innovation. Predictive and intelligent chassis systems and automated driving are just some of the topics being addressed. In addition to enhancing driving comfort and safety, interconnecting the powertrain with the chassis can also provide new functions, not only in cars but also in commercial vehicles. What is more, modularization, electrification of the powertrain, intelligent development methods and efforts to reduce fuel consumption are also driving innovations in chassis systems.
This volume focuses on interaction between vegetation, relief, climate, soil and fauna in the treeline ecotone, and the effects of climate change and land use in North America and Europe.
The reconciliation of economic development, social justice and reduction of greenhouse gas emissions is one of the biggest political challenges of the moment. Strategies for mitigating CO2 emissions on a large scale using sequestration, storage and carbon technologies are priorities on the agendas of research centres and governments. Research on carbon sequestration is the path to solving major sustainability problems of this century a complex issue that requires a scientific approach and multidisciplinary and interdisciplinary technology, plus a collaborative policy among nations. Thus, this challenge makes this book an important source of information for researchers, policymakers and anyone with an inquiring mind on this subject.
The key drivers of innovation in the field of chassis systems are measures to improve vehicle dynamics and driving safety, efforts to reduce fuel consumption, and intelligent development methods. In addition, chassis development is focusing on enhancing ride comfort while also improving NVH characteristics. At the same time, modularization strategies, concepts for the electrification of the powertrain, and steps towards greater system connectivity are making increasingly complex demands on the chassis and its development. Developers are being called upon to respond to these challenges with a variety of solutions.
With more than 500 species distributed all around the Northern Hemisphere, the genus Quercus L. is a dominant element of a wide variety of habitats including temperate, tropical, subtropical and mediterranean forests and woodlands. As the fossil record reflects, oaks were usual from the Oligocene onwards, showing the high ability of the genus to colonize new and different habitats. Such diversity and ecological amplitude makes genus Quercus an excellent framework for comparative ecophysiological studies, allowing the analysis of many mechanisms that are found in different oaks at different level (leaf or stem). The combination of several morphological and physiological attributes defines the existence of different functional types within the genus, which are characteristic of specific phytoclimates. From a landscape perspective, oak forests and woodlands are threatened by many factors that can compromise their future: a limited regeneration, massive decline processes, mostly triggered by adverse climatic events or the competence with other broad-leaved trees and conifer species. The knowledge of all these facts can allow for a better management of the oak forests in the future.