You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
There is a nineteen-year recurrence in the apparent position of the sun and moon against the background of the stars, a pattern observed long ago by the Babylonians. In the course of those nineteen years the Earth experiences 235 lunar cycles. Suppose we calculate the ratio of Earth's period about the sun to the moon's period about Earth. That ratio has 235/19 as one of its early continued fraction convergents, which explains the apparent periodicity. Exploring Continued Fractions explains this and other recurrent phenomena—astronomical transits and conjunctions, lifecycles of cicadas, eclipses—by way of continued fraction expansions. The deeper purpose is to find patterns, solve puzzles...
None
An accessible introduction to the plane algebraic curves that also serves as a natural entry point to algebraic geometry. This book can be used for an undergraduate course, or as a companion to algebraic geometry at graduate level.
How a modern radio works, told through mathematics, history, and selected puzzles The modern radio is a wonder, and behind that magic is mathematics. In The Mathematical Radio, Paul Nahin explains how radios work, deploying mathematics and historical discussion, accompanied by a steady stream of intriguing puzzles for math buffs to ponder. Beginning with oscillators and circuits, then moving on to AM, FM, and single-sideband radio, Nahin focuses on the elegant mathematics underlying radio technology rather than the engineering. He explores and explains more than a century of key developments, placing them in historical and technological context. Nahin, a prolific author of books on math for ...
An introductory guide to elementary number theory for advanced undergraduates and graduates.
Recipient of the Mathematical Association of America's Beckenbach Book Prize in 2006! Mathematics is the science of patterns, and mathematicians attempt to understand these patterns and discover new ones using a variety of tools. In Proofs That Really Count, award-winning math professors Arthur Benjamin and Jennifer Quinn demonstrate that many number patterns, even very complex ones, can be understood by simple counting arguments. The book emphasizes numbers that are often not thought of as numbers that count: Fibonacci Numbers, Lucas Numbers, Continued Fractions, and Harmonic Numbers, to name a few. Numerous hints and references are given for all chapter exercises and many chapters end with a list of identities in need of combinatorial proof. The extensive appendix of identities will be a valuable resource. This book should appeal to readers of all levels, from high school math students to professional mathematicians.
A thorough development of a topic at the core of mathematics, ideal for graduate students and professional mathematicians.
This is a book about complex variables that gives the reader a quick and accessible introduction to the key topics. While the coverage is not comprehensive, it certainly gives the reader a solid grounding in this fundamental area. There are many figures and examples to illustrate the principal ideas, and the exposition is lively and inviting. An undergraduate wanting to have a first look at this subject or a graduate student preparing for the qualifying exams, will find this book to be a useful resource.
MAA guides series numbering on title page appears as # 49. It should read # 9.