You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Pressley assumes the reader knows the main results of multivariate calculus and concentrates on the theory of the study of surfaces. Used for courses on surface geometry, it includes intersting and in-depth examples and goes into the subject in great detail and vigour. The book will cover three-dimensional Euclidean space only, and takes the whole book to cover the material and treat it as a subject in its own right.
Curves and surfaces are objects that everyone can see, and many of the questions that can be asked about them are natural and easily understood. Differential geometry is concerned with the precise mathematical formulation of some of these questions, and with trying to answer them using calculus techniques. It is a subject that contains some of the most beautiful and profound results in mathematics, yet many of them are accessible to higher level undergraduates.Elementary Differential Geometry presents the main results in the differential geometry of curves and surfaces while keeping the prerequisites to an absolute minimum. Nothing more than first courses in linear algebra and multivariate calculus are required, and the most direct and straightforward approach is used at all times. Numerous diagrams illustrate both the ideas in the text and the examples of curves and surfaces discussed there.
Elementary Differential Geometry presents the main results in the differential geometry of curves and surfaces suitable for a first course on the subject. Prerequisites are kept to an absolute minimum – nothing beyond first courses in linear algebra and multivariable calculus – and the most direct and straightforward approach is used throughout. New features of this revised and expanded second edition include: a chapter on non-Euclidean geometry, a subject that is of great importance in the history of mathematics and crucial in many modern developments. The main results can be reached easily and quickly by making use of the results and techniques developed earlier in the book. Coverage of topics such as: parallel transport and its applications; map colouring; holonomy and Gaussian curvature. Around 200 additional exercises, and a full solutions manual for instructors, available via www.springer.com ul
This book comprises an overview of the material presented at the 1999 Durham Symposium on Quantum Groups and includes contributions from many of the world's leading figures in this area. It will be of interest to researchers and will also be useful as a reference text for graduate courses.
Since they first arose in the 1970s and early 1980s, quantum groups have proved to be of great interest to mathematicians and theoretical physicists. The theory of quantum groups is now well established as a fascinating chapter of representation theory, and has thrown new light on many different topics, notably low-dimensional topology and conformal field theory. The goal of this book is to give a comprehensive view of quantum groups and their applications. The authors build on a self-contained account of the foundations of the subject and go on to treat the more advanced aspects concisely and with detailed references to the literature. Thus this book can serve both as an introduction for the newcomer, and as a guide for the more experienced reader. All who have an interest in the subject will welcome this unique treatment of quantum groups.
From the reviews of the French edition: "This is a rich and useful volume. The material it treats has relevance well beyond the theory of Lie groups and algebras, ranging from the geometry of regular polytopes and paving problems to current work on finite simple groups having a (B,N)-pair structure, or ‘Tits systems’". --G.B. Seligman in MathReviews.
Beyond sound equipment and music charts, eleven noted worship leaders from around the United States write about the ministerial part of their work as it relates to the gospel, mission, disciple-making, liturgy, the Trinity, justice, creativity, family, and more.
This volume records most of the talks given at the Conference on Infinite-dimensional Groups held at the Mathematical Sciences Research Institute at Berkeley, California, May 10-May 15, 1984, as a part of the special program on Kac-Moody Lie algebras. The purpose of the conference was to review recent developments of the theory of infinite-dimensional groups and its applications. The present collection concentrates on three very active, interrelated directions of the field: general Kac-Moody groups, gauge groups (especially loop groups) and diffeomorphism groups. I would like to express my thanks to the MSRI for sponsoring the meeting, to Ms. Faye Yeager for excellent typing, to the authors ...
Representations of Groups contains papers presented at the Canadian Mathematical Society Annual Seminar held in June 1994, in Banff, Alberta, Canada.
This book presents a concise exposition of modern mathematical concepts, models and methods with applications in computer graphics, vision and machine learning. The compendium is organized in four parts — Algebra, Geometry, Topology, and Applications. One of the features is a unique treatment of tensor and manifold topics to make them easier for the students. All proofs are omitted to give an emphasis on the exposition of the concepts. Effort is made to help students to build intuition and avoid parrot-like learning.There is minimal inter-chapter dependency. Each chapter can be used as an independent crash course and the reader can start reading from any chapter — almost. This book is intended for upper level undergraduate students, graduate students and researchers in computer graphics, geometric modeling, computer vision, pattern recognition and machine learning. It can be used as a reference book, or a textbook for a selected topics course with the instructor's choice of any of the topics.