You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Quickly detect, troubleshoot, and prevent a wide range of data issues through data observability, a set of best practices that enables data teams to gain greater visibility of data and its usage. If you're a data engineer, data architect, or machine learning engineer who depends on the quality of your data, this book shows you how to focus on the practical aspects of introducing data observability in your everyday work. Author Andy Petrella helps you build the right habits to identify and solve data issues, such as data drifts and poor quality, so you can stop their propagation in data applications, pipelines, and analytics. You'll learn ways to introduce data observability, including setting up a framework for generating and collecting all the information you need. Learn the core principles and benefits of data observability Use data observability to detect, troubleshoot, and prevent data issues Follow the book's recipes to implement observability in your data projects Use data observability to create a trustworthy communication framework with data consumers Learn how to educate your peers about the benefits of data observability
Quickly detect, troubleshoot, and prevent a wide range of data issues through data observability, a set of best practices that enables data teams to gain greater visibility of data and its usage. If you're a data engineer, data architect, or machine learning engineer who depends on the quality of your data, this book shows you how to focus on the practical aspects of introducing data observability in your everyday work. Author Andy Petrella helps you build the right habits to identify and solve data issues, such as data drifts and poor quality, so you can stop their propagation in data applications, pipelines, and analytics. You'll learn ways to introduce data observability, including setting up a framework for generating and collecting all the information you need. Learn the core principles and benefits of data observability Use data observability to detect, troubleshoot, and prevent data issues Follow the book's recipes to implement observability in your data projects Use data observability to create a trustworthy communication framework with data consumers Learn how to educate your peers about the benefits of data observability
Data engineering has grown rapidly in the past decade, leaving many software engineers, data scientists, and analysts looking for a comprehensive view of this practice. With this practical book, you'll learn how to plan and build systems to serve the needs of your organization and customers by evaluating the best technologies available through the framework of the data engineering lifecycle. Authors Joe Reis and Matt Housley walk you through the data engineering lifecycle and show you how to stitch together a variety of cloud technologies to serve the needs of downstream data consumers. You'll understand how to apply the concepts of data generation, ingestion, orchestration, transformation, ...
Discover actionable steps to maintain healthy data pipelines to promote data observability within your teams with this essential guide to elevating data engineering practices Key Features Learn how to monitor your data pipelines in a scalable way Apply real-life use cases and projects to gain hands-on experience in implementing data observability Instil trust in your pipelines among data producers and consumers alike Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionIn the age of information, strategic management of data is critical to organizational success. The constant challenge lies in maintaining data accuracy and preventing data pipelines from breaking. Dat...
Ready to simplify the process of building data lakehouses and data pipelines at scale? In this practical guide, learn how Delta Lake is helping data engineers, data scientists, and data analysts overcome key data reliability challenges with modern data engineering and management techniques. Authors Denny Lee, Tristen Wentling, Scott Haines, and Prashanth Babu (with contributions from Delta Lake maintainer R. Tyler Croy) share expert insights on all things Delta Lake--including how to run batch and streaming jobs concurrently and accelerate the usability of your data. You'll also uncover how ACID transactions bring reliability to data lakehouses at scale. This book helps you: Understand key data reliability challenges and how Delta Lake solves them Explain the critical role of Delta transaction logs as a single source of truth Learn the Delta Lake ecosystem with technologies like Apache Flink, Kafka, and Trino Architect data lakehouses with the medallion architecture Optimize Delta Lake performance with features like deletion vectors and liquid clustering
Learn how to build end-to-end scalable machine learning solutions with Apache Spark. With this practical guide, author Adi Polak introduces data and ML practitioners to creative solutions that supersede today's traditional methods. You'll learn a more holistic approach that takes you beyond specific requirements and organizational goals--allowing data and ML practitioners to collaborate and understand each other better. Scaling Machine Learning with Spark examines several technologies for building end-to-end distributed ML workflows based on the Apache Spark ecosystem with Spark MLlib, MLflow, TensorFlow, and PyTorch. If you're a data scientist who works with machine learning, this book show...
Don’t fly blind. Observability gives you actionable insights into your cloud native systems—from pinpointing errors, to increasing developer productivity, to tracking compliance. Observability is the difference between an error message and an error explanation with a recipe how to resolve the error! You know exactly which service is affected, who’s responsible for its repair, and even how it can be optimized in the future. Cloud Observability in Action teaches you how to set up an observability system that learns from a cloud application’s signals, logging, and monitoring, all using free and open source tools. In Cloud Observability in Action you will learn how to: Apply observabilit...
As data continues to grow and become more complex, organizations seek innovative solutions to manage their data effectively. Data mesh is one solution that provides a new approach to managing data in complex organizations. This practical guide offers step-by-step guidance on how to implement data mesh in your organization. In this book, Jean-Georges Perrin and Eric Broda focus on the key components of data mesh and provide practical advice supported by code. Data engineers, architects, and analysts will explore a simple and intuitive process for identifying key data mesh components and data products. You'll learn a consistent set of interfaces and access methods that make data products easy ...
Data has been a missing part of most academic curriculums for a long time, and we're all being affected. During challenging times, creating a data-informed culture can help you pivot quickly or prevent expensive missteps. Developing a data curious organization will take advantage of the burgeoning data resources available as a result of increasing digitalization. With this book, author Carl Allchin shows today's business professionals how to become data empowered. These tech-savvy business professionals will learn data literacy fundamentals—from understanding the possibilities to asking the right questions. You'll discover how to make the right technology choices and avoid pitfalls that could put your career and company at risk. Discover what an agile, empowered, data-driven organization should look like Examine how to use data in new ways to help your business come to life Learn key terms and concepts around data management and analytics Understand the differences between spreadsheet analysis and a data analytics pipeline Get advice for working with data scientists and explore ways to mitigate the IT department's concerns
Many enterprises are investing in a next-generation data lake, hoping to democratize data at scale to provide business insights and ultimately make automated intelligent decisions. In this practical book, author Zhamak Dehghani reveals that, despite the time, money, and effort poured into them, data warehouses and data lakes fail when applied at the scale and speed of today's organizations. A distributed data mesh is a better choice. Dehghani guides architects, technical leaders, and decision makers on their journey from monolithic big data architecture to a sociotechnical paradigm that draws from modern distributed architecture. A data mesh considers domains as a first-class concern, applie...