You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Due to its data handling and modeling capabilities as well as its flexibility, R is becoming the most widely used software in bioinformatics. R Programming for Bioinformatics explores the programming skills needed to use this software tool for the solution of bioinformatics and computational biology problems.Drawing on the author's first-hand exper
Often considered more of an art than a science, books on clustering have been dominated by learning through example with techniques chosen almost through trial and error. Even the two most popular, and most related, clustering methods-K-Means for partitioning and Ward's method for hierarchical clustering-have lacked the theoretical underpinning req
Data analysis is changing fast. Driven by a vast range of application domains and affordable tools, machine learning has become mainstream. Unsupervised data analysis, including cluster analysis, factor analysis, and low dimensionality mapping methods continually being updated, have reached new heights of achievement in the incredibly rich data wor
Interactive Graphics for Data Analysis: Principles and Examples discusses exploratory data analysis (EDA) and how interactive graphical methods can help gain insights as well as generate new questions and hypotheses from datasets.Fundamentals of Interactive Statistical GraphicsThe first part of the book summarizes principles and methodology, demons
Providing key information on how to work with research data, Introduction to Data Technologies presents ideas and techniques for performing critical, behind-the-scenes tasks that take up so much time and effort yet typically receive little attention in formal education. With a focus on computational tools, the book shows readers how to improve thei
Lucidly Integrates Current Activities Focusing on both fundamentals and recent advances, Introduction to Machine Learning and Bioinformatics presents an informative and accessible account of the ways in which these two increasingly intertwined areas relate to each other. Examines Connections between Machine Learning & Bioinformatics The book begins with a brief historical overview of the technological developments in biology. It then describes the main problems in bioinformatics and the fundamental concepts and algorithms of machine learning. After forming this foundation, the authors explore how machine learning techniques apply to bioinformatics problems, such as electron density map inter...
Visualization and Verbalization of Data shows how correspondence analysis and related techniques enable the display of data in graphical form, which results in the verbalization of the structures in data. Renowned researchers in the field trace the history of these techniques and cover their current applications. The first part of the book explains the historical origins of correspondence analysis and associated methods. The second part concentrates on the contributions made by the school of Jean-Paul Benzécri and related movements, such as social space and geometric data analysis. Although these topics are viewed from a French perspective, the book makes them understandable to an international audience. Throughout the text, well-known experts illustrate the use of the methods in practice. Examples include the spatial visualization of multivariate data, cluster analysis in computer science, the transformation of a textual data set into numerical data, the use of quantitative and qualitative variables in multiple factor analysis, different possibilities of recoding data prior to visualization, and the application of duality diagram theory to the analysis of a contingency table.
To harness the high-throughput potential of DNA microarray technology, it is crucial that the analysis stages of the process are decoupled from the requirements of operator assistance. Microarray Image Analysis: An Algorithmic Approach presents an automatic system for microarray image processing to make this decoupling a reality. The proposed syste
The second edition of this bestseller provides a practical and accessible introduction to the main concepts, foundation, and applications of Bayesian networks. This edition contains a new chapter on Bayesian network classifiers and a new section on object-oriented Bayesian networks, along with new applications and case studies. It includes a new section that addresses foundational problems with causal discovery and Markov blanket discovery and a new section that covers methods of evaluating causal discovery programs. The book also offers more coverage on the uses of causal interventions to understand and reason with causal Bayesian networks. Supplemental materials are available on the book's website.
Full of real-world case studies and practical advice, Exploratory Multivariate Analysis by Example Using R focuses on four fundamental methods of multivariate exploratory data analysis that are most suitable for applications. It covers principal component analysis (PCA) when variables are quantitative, correspondence analysis (CA) and multiple correspondence analysis (MCA) when variables are categorical, and hierarchical cluster analysis. The authors take a geometric point of view that provides a unified vision for exploring multivariate data tables. Within this framework, they present the principles, indicators, and ways of representing and visualizing objects that are common to the explora...