You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume contains the notes from five lecture courses devoted to nonautonomous differential systems, in which appropriate topological and dynamical techniques were described and applied to a variety of problems. The courses took place during the C.I.M.E. Session "Stability and Bifurcation Problems for Non-Autonomous Differential Equations," held in Cetraro, Italy, June 19-25 2011. Anna Capietto and Jean Mawhin lectured on nonlinear boundary value problems; they applied the Maslov index and degree-theoretic methods in this context. Rafael Ortega discussed the theory of twist maps with nonperiodic phase and presented applications. Peter Kloeden and Sylvia Novo showed how dynamical methods can be used to study the stability/bifurcation properties of bounded solutions and of attracting sets for nonautonomous differential and functional-differential equations. The volume will be of interest to all researchers working in these and related fields.
This work, consisting of expository articles as well as research papers, highlights recent developments in nonlinear analysis and differential equations. The material is largely an outgrowth of autumn school courses and seminars held at the University of Lisbon and has been thoroughly refereed. Several topics in ordinary differential equations and partial differential equations are the focus of key articles, including: * periodic solutions of systems with p-Laplacian type operators (J. Mawhin) * bifurcation in variational inequalities (K. Schmitt) * a geometric approach to dynamical systems in the plane via twist theorems (R. Ortega) * asymptotic behavior and periodic solutions for Navier--Stokes equations (E. Feireisl) * mechanics on Riemannian manifolds (W. Oliva) * techniques of lower and upper solutions for ODEs (C. De Coster and P. Habets) A number of related subjects dealing with properties of solutions, e.g., bifurcations, symmetries, nonlinear oscillations, are treated in other articles. This volume reflects rich and varied fields of research and will be a useful resource for mathematicians and graduate students in the ODE and PDE community.
The two-volume set LNCS 10896 and 10897 constitutes the refereed proceedings of the 16th International Conference on Computers Helping People with Special Needs, ICCHP 2018, held in Linz, Austria, in July2018. The 101 revised full papers and 78 short papers presented were carefully reviewed and selected from 356 submissions. The papers are organized in the following topical sections: Web accessibility in the connected world; accessibility and usability of mobile platforms for people with disabilities and elderly persons: design, development and engineering; accessible system/information/document design; accessible e-learning - e-learning for accessibility/AT; personalized access to TV, film,...
In recent years, there has been a tremendous amount of research activity in the general area of population dynamics, particularly the Lotka-Volterra system, which has been a rich source of mathematical ideas from both theoretical and application points of view. In spite of the technological advances, many authors seem to be unaware of the bulk of the work that has been done in this area recently. This often leads to duplication of work and frustration to the authors as well as to the editors of various journals. This book is built out of lecture notes and consists of three chapters written by four mathematicians with overlapping expertise that cover a broad sector of the research in this are...
None
The meeting explored current directions of research in delay differential equations and related dynamical systems and celebrated the contributions of Kenneth Cooke to this field on the occasion of his 65th birthday. The volume contains three survey papers reviewing three areas of current research and seventeen research contributions. The research articles deal with qualitative properties of solutions of delay differential equations and with bifurcation problems for such equations and other dynamical systems. A companion volume in the biomathematics series (LN in Biomathematics, Vol. 22) contains contributions on recent trends in population and mathematical biology.