You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume presents articles originating from invited talks at an exciting international conference held at The Fields Institute in Toronto celebrating the sixtieth birthday of the renowned mathematician, Vladimir Arnold. Experts from the world over--including several from "Arnold's school"--gave illuminating talks and lively poster sessions. The presentations focused on Arnold's main areas of interest: singularity theory, the theory of curves, symmetry groups, dynamical systems, mechanics, and related areas of mathematics. The book begins with notes of three lectures by V. Arnold given in the framework of the Institute's Distinguished Lecturer program. The topics of the lectures are: (1) From Hilbert's Superposition Problem to Dynamical Systems (2) Symplectization, Complexification, and Mathematical Trinities (3) Topological Problems in Wave Propagation Theory and Topological Economy Principle in Algebraic Geometry. Arnold's three articles include insightful comments on Russian and Western mathematics and science. Complementing the first is Jurgen Moser's "Recollections", concerning some of the history of KAM theory.
During the last decade, many novel approaches have been considered for dealing with computationally difficult discrete optimization problems. Such approaches include interior point methods, semidefinite programming techniques, and global optimization. More efficient computational algorithms have been developed and larger problem instances of hard discrete problems have been solved. This progress is due in part to these novel approaches, but also to new computing facilities and massive parallelism. This volume contains the papers presented at the workshop on ''Novel Approaches to Hard Discrete Optimization''. The articles cover a spectrum of issues regarding computationally hard discrete problems.
The study of operator algebras, which grew out of von Neumann's work in the 1920s and the 1930s on modelling quantum mechanics, has in recent years experienced tremendous growth and vitality. This growth has resulted in significant applications in other areas - both within and outside mathematics. The field was a natural candidate for a 1994-1995 programme year in Operator Algebras and Applications held at The Fields Institute for Research in the Mathematical Sciences. This volume contains a selection of papers that arose from the seminars and workshops of the programme. Topics covered include the classification of amenable C ]*-algebras, the Baum-Connes conjecture, E [0 semigroups, subfactors, E-theory, quasicrystals, and the solution to a long-standing problem in operator theory: can almost commuting self-adjoint matrices be approximated by commuting self-adjoint matrices?
The study of operator algebras, which grew out of von Neumann's work in the 1920s and the 1930s on modelling quantum mechanics, has in recent years experienced tremendous growth and vitality. This growth has resulted in significant applications in other areas - both within and outside mathematics. The field was a natural candidate for a 1994-1995 program year in Operator Algebras and Applications held at The Fields Institute for Research in the Mathematical Sciences. This volume contains a selection of papers that arose from the seminars and workshops of the program. Topics covered include the classification of amenable C*-algebras, the Baum-Connes conjecture, E[subscript 0] semigroups, subfactors, E-theory, quasicrystals, and the solution to a long-standing problem in operator theory: Can almost commuting self-adjoint matrices be approximated by commuting self-adjoint matrices?
Vertex operator algebras are a class of algebras underlying a number of recent constructions, results, and themes in mathematics. These algebras can be understood as ''string-theoretic analogues'' of Lie algebras and of commutative associative algebras. They play fundamental roles in some of the most active research areas in mathematics and physics. Much recent progress in both physics and mathematics has benefited from cross-pollination between the physical and mathematical points of view. This book presents the proceedings from the workshop, ''Vertex Operator Algebras in Mathematics and Physics'', held at The Fields Institute. It consists of papers based on many of the talks given at the conference by leading experts in the algebraic, geometric, and physical aspects of vertex operator algebra theory. The book is suitable for graduate students and research mathematicians interested in the major themes and important developments on the frontier of research in vertex operator algebra theory and its applications in mathematics and physics.
Since the publication of "Theory of Games and Economic Behavior" by von Neumann and Morgenstern, the concept of games has played an increasing role in economics. It also plays a role of growing importance in other sciences, including biology, political science, and psychology. Many scientists have made seminal advances and continue to be leaders in the field, including Harsanyi, Shapley, Shubik, and Selten. Professor Robert Aumann, in addition to his important contributions to game theory and economics, made a number of significant contributions to mathematics. This volume provides a collection of essays in mathematical economics and game theory, including cutting-edge research on noncoopera...
Noncommutative geometry is a new field that is among the great challenges of present-day mathematics. Its methods allow one to treat noncommutative algebras - such as algebras of pseudodifferential operators, group algebras, or algebras arising from quantum field theory - on the same footing as commutative algebras, that is, as spaces. Applications range over many fields of mathematics and mathematical physics. This volume contains the proceedings of the workshop on "Cyclic Cohomology and Noncommutative Geometry" held at The Fields Institute (Waterloo, ON) in June 1995. The workshop was part of the program for the special year on operator algebras and its applications.
This volume represents the proceedings of the Noncommutative Geometry Workshop that was held as part of the thematic program on operator algebras at the Fields Institute in May 2008. Pioneered by Alain Connes starting in the late 1970s, noncommutative geometry was originally inspired by global analysis, topology, operator algebras, and quantum physics. Its main applications were to settle some long-standing conjectures, such as the Novikov conjecture and the Baum-Connes conjecture. Next came the impact of spectral geometry and the way the spectrum of a geometric operator, like the Laplacian, holds information about the geometry and topology of a manifold, as in the celebrated Weyl law. This ...
This book is the first of two proceedings volumes stemming from the International Conference and Workshop on Valuation Theory held at the University of Saskatchewan (Saskatoon, SK, Canada). Valuation theory arose in the early part of the twentieth century in connection with number theory and has many important applications to geometry and analysis: the classical application to the study of algebraic curves and to Dedekind and Prufer domains; the close connection to the famousresolution of the singularities problem; the study of the absolute Galois group of a field; the connection between ordering, valuations, and quadratic forms over a formally real field; the application to real algebraic geometry; the study of noncommutative rings; etc. The special feature of this book isits focus on current applications of valuation theory to this broad range of topics. Also included is a paper on the history of valuation theory. The book is suitable for graduate students and research mathematicians working in algebra, algebraic geometry, number theory, and mathematical logic.