You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A unique and critical analysis of the wealth of research conducted on the biology, biochemistry and chemical ecology of the rapidly growing field of insect cuticular hydrocarbons. Authored by leading experts in their respective fields, the twenty chapters show the complexity that has been discovered in the nature and role of hydrocarbons in entomology. Covers, in great depth, aspects of chemistry (structures, qualitative and quantitative analysis), biochemistry (biosynthesis, molecular biology, genetics, evolution), physiology, taxonomy, and ecology. Clearly presents to the reader the array of data, ideas, insights and historical disagreements that have been accumulated during the past half century. An emphasis is placed on the role of insect hydrocarbons in chemical communication, especially among the social insects. Includes the first review on the chemical synthesis of insect hydrocarbons. The material presented is a major resource for current researchers and a source of ideas for new researchers.
The book features comparative perspectives on the field of chemical ecology, present and future, offered by scientists from a wide variety of disciplines. The scientists contributing to this book –biologists, ecologists, biochemists, chemists, biostatisticians – are interested in marine, freshwater and terrestrial ecosystems and work on life forms ranging from micro-organisms to mammals, including humans, living in areas from the tropics to polar regions. Here, they cross their analyses of the present state of chemical ecology and its perspectives for the future. Those presented here include complex, multispecies communities and cover a wide range both of organisms and of the types of molecules that mediate the interactions between them. Up to now, no book has presented a solid scientific treatment of a wide range of examples. This book illustrates a diverse panel of the most advanced aspects of this rapidly expanding field.
This book uses a wide range of case studies from different invertebrate taxa to describe the numerous forms of social recognition occurring in this large group of animals and traces the evolution of this cognitive ability. The authors provide several examples of direct (i.e. the target of recognition is a conspecific) and indirect recognition (i.e. recognition of a reliable proxy rather than an individual, such as a den or a substrate) and discuss cases of familiar recognition (i.e. an animal remembers a conspecific but cannot tell what class it comes from or recognize its identity). Class-level recognition (i.e. an animal assigns a conspecific to an appropriate class of animals), and true individual recognition (i.e. an animal both identifies and recognizes a conspecific on an individual basis) are also addressed.
Bringing together for the first time prominent researchers in social insect pheromone communication, including nestmate recognition, this book looks at ants, wasps, bees, and termites, highlighting areas of convergence and divergence among these groups, and identifying areas that need further investigation. Presenting broad synthetic overviews as well as species-specific studies, the volume will be useful to natural scientists, ecologists, and those interested in pest management, as well as to anyone interested in the fascinating chemically mediated behavioral interactions of social insects.
The book features comparative perspectives on the field of chemical ecology, present and future, offered by scientists from a wide variety of disciplines. The scientists contributing to this book –biologists, ecologists, biochemists, chemists, biostatisticians – are interested in marine, freshwater and terrestrial ecosystems and work on life forms ranging from micro-organisms to mammals, including humans, living in areas from the tropics to polar regions. Here, they cross their analyses of the present state of chemical ecology and its perspectives for the future. Those presented here include complex, multispecies communities and cover a wide range both of organisms and of the types of molecules that mediate the interactions between them. Up to now, no book has presented a solid scientific treatment of a wide range of examples. This book illustrates a diverse panel of the most advanced aspects of this rapidly expanding field.
None
None
None