You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A new approach to abstract algebra that eases student anxieties by building on fundamentals. Introduction to Abstract Algebra presents a breakthrough approach to teaching one of math's most intimidating concepts. Avoiding the pitfalls common in the standard textbooks, Benjamin Fine, Anthony M. Gaglione, and Gerhard Rosenberger set a pace that allows beginner-level students to follow the progression from familiar topics such as rings, numbers, and groups to more difficult concepts. Classroom tested and revised until students achieved consistent, positive results, this textbook is designed to keep students focused as they learn complex topics. Fine, Gaglione, and Rosenberger's clear explanatio...
This book is a festschrift in honor of Professor Anthony Gaglione's sixtieth birthday. This volume presents an excellent mix of research and expository articles on various aspects of infinite group theory. The papers give a broad overview of present research in infinite group theory in general, and combinatorial group theory and non-Abelian group-based cryptography in particular. They also pinpoint the interactions between combinatorial group theory and mathematical logic, especially model theory.
The development of algebraic geometry over groups, geometric group theory and group-based cryptography, has led to there being a tremendous recent interest in infinite group theory. This volume presents a good collection of papers detailing areas of current interest.
This volume contains the proceedings of the AMS Special Session on Algorithmic Problems of Group Theory and Their Complexity, held January 9-10, 2013 in San Diego, CA and the AMS Special Session on Algorithmic Problems of Group Theory and Applications to Information Security, held April 6-7, 2013 at Boston College, Chestnut Hill, MA. Over the past few years the field of group-based cryptography has attracted attention from both group theorists and cryptographers. The new techniques inspired by algorithmic problems in non-commutative group theory and their complexity have offered promising ideas for developing new cryptographic protocols. The papers in this volume cover algorithmic group theory and applications to cryptography.
Toric topology is the study of algebraic, differential, symplectic-geometric, combinatorial, and homotopy-theoretic aspects of a particular class of torus actions whose quotients are highly structured. The combinatorial properties of this quotient and the equivariant topology of the original manifold interact in a rich variety of ways, thus illuminating subtle aspects of both the combinatorics and the equivariant topology. Many of the motivations and guiding principles of the fieldare provided by (though not limited to) the theory of toric varieties in algebraic geometry as well as that of symplectic toric manifolds in symplectic geometry.This volume is the proceedings of the International C...
Selected papers presented at the international conference on group theory held at St. Andrews in 1989 are combined in two volumes. The themes of the conference were combinatorial and computational group theory.
While rooted in controlled PDE systems, this 2005 AMS-IMS-SIAM Summer Research Conference sought to reach out to a rather distinct, yet scientifically related, research community in mathematics interested in PDE-based dynamical systems. Indeed, this community is also involved in the study of dynamical properties and asymptotic long-time behavior (in particular, stability) of PDE-mixed problems. It was the editors' conviction that the time had become ripe and the circumstances propitious for these two mathematical communities--that of PDE control and optimization theorists and that of dynamical specialists--to come together in order to share recent advances and breakthroughs in their respecti...
This book is based on talks presented at the Summer School on Interactions between Homotopy theory and Algebra held at the University of Chicago in the summer of 2004. The goal of this book is to create a resource for background and for current directions of research related to deep connections between homotopy theory and algebra, including algebraic geometry, commutative algebra, and representation theory. The articles in this book are aimed at the audience of beginning researchers with varied mathematical backgrounds and have been written with both the quality of exposition and the accessibility to novices in mind.
This book is a collection of original research papers and expository articles from the scientific program of the 2004-05 Emphasis Year on Stochastic Analysis and Partial Differential Equations at Northwestern University. Many well-known mathematicians attended the events and submitted their contributions for this volume. Topics from stochastic analysis discussed in this volume include stochastic analysis of turbulence, Markov processes, microscopic lattice dynamics, microscopic interacting particle systems, and stochastic analysis on manifolds. Topics from partial differential equations include kinetic equations, hyperbolic conservation laws, Navier-Stokes equations, and Hamilton-Jacobi equa...
Ultrafilters and ultraproducts provide a useful generalization of the ordinary limit processes which have applications to many areas of mathematics. Typically, this topic is presented to students in specialized courses such as logic, functional analysis, or geometric group theory. In this book, the basic facts about ultrafilters and ultraproducts are presented to readers with no prior knowledge of the subject and then these techniques are applied to a wide variety of topics. The first part of the book deals solely with ultrafilters and presents applications to voting theory, combinatorics, and topology, while also dealing also with foundational issues. The second part presents the classical ...