Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Large Deviations for Stochastic Processes
  • Language: en
  • Pages: 426

Large Deviations for Stochastic Processes

The book is devoted to the results on large deviations for a class of stochastic processes. Following an introduction and overview, the material is presented in three parts. Part 1 gives necessary and sufficient conditions for exponential tightness that are analogous to conditions for tightness in the theory of weak convergence. Part 2 focuses on Markov processes in metric spaces. For a sequence of such processes, convergence of Fleming's logarithmically transformed nonlinear semigroups is shown to imply the large deviation principle in a manner analogous to the use of convergence of linear semigroups in weak convergence. Viscosity solution methods provide applicable conditions for the necessary convergence. Part 3 discusses methods for verifying the comparison principle for viscosity solutions and applies the general theory to obtain a variety of new and known results on large deviations for Markov processes. In examples concerning infinite dimensional state spaces, new comparison principles are derived for a class of Hamilton-Jacobi equations in Hilbert spaces and in spaces of probability measures.

Discrete Groups and Geometric Structures
  • Language: en
  • Pages: 162

Discrete Groups and Geometric Structures

This volume reports on research related to Discrete Groups and Geometric Structures, as presented during the International Workshop held May 26-30, 2008, in Kortrijk, Belgium. Readers will benefit from impressive survey papers by John R. Parker on methods to construct and study lattices in complex hyperbolic space and by Ursula Hamenstadt on properties of group actions with a rank-one element on proper $\mathrm{CAT}(0)$-spaces. This volume also contains research papers in the area of group actions and geometric structures, including work on loops on a twice punctured torus, the simplicial volume of products and fiber bundles, the homology of Hantzsche-Wendt groups, rigidity of real Bott towers, circles in groups of smooth circle homeomorphisms, and groups generated by spine reflections admitting crooked fundamental domains.

Nonlinear Dispersive Equations
  • Language: en
  • Pages: 272

Nonlinear Dispersive Equations

This book provides a self-contained presentation of classical and new methods for studying wave phenomena that are related to the existence and stability of solitary and periodic travelling wave solutions for nonlinear dispersive evolution equations. Simplicity, concrete examples, and applications are emphasized throughout in order to make the material easily accessible. The list of classical nonlinear dispersive equations studied include Korteweg-de Vries, Benjamin-Ono, and Schrodinger equations. Many special Jacobian elliptic functions play a role in these examples. The author brings the reader to the forefront of knowledge about some aspects of the theory and motivates future developments in this fascinating and rapidly growing field. The book can be used as an instructive study guide as well as a reference by students and mature scientists interested in nonlinear wave phenomena.

Potential Theory and Dynamics on the Berkovich Projective Line
  • Language: en
  • Pages: 466

Potential Theory and Dynamics on the Berkovich Projective Line

The purpose of this book is to develop the foundations of potential theory and rational dynamics on the Berkovich projective line over an arbitrary complete, algebraically closed non-Archimedean field. In addition to providing a concrete and ``elementary'' introduction to Berkovich analytic spaces and to potential theory and rational iteration on the Berkovich line, the book contains applications to arithmetic geometry and arithmetic dynamics. A number of results in the book are new, and most have not previously appeared in book form. Three appendices--on analysis, $\mathbb{R}$-trees, and Berkovich's general theory of analytic spaces--are included to make the book as self-contained as possib...

Combinatorics and Physics
  • Language: en
  • Pages: 480

Combinatorics and Physics

This book is based on the mini-workshop Renormalization, held in December 2006, and the conference Combinatorics and Physics, held in March 2007. Both meetings took place at the Max-Planck-Institut fur Mathematik in Bonn, Germany. Research papers in the volume provide an overview of applications of combinatorics to various problems, such as applications to Hopf algebras, techniques to renormalization problems in quantum field theory, as well as combinatorial problems appearing in the context of the numerical integration of dynamical systems, in noncommutative geometry and in quantum gravity. In addition, it contains several introductory notes on renormalization Hopf algebras, Wilsonian renormalization and motives.

Groups, Rings, Group Rings, and Hopf Algebras
  • Language: en
  • Pages: 294

Groups, Rings, Group Rings, and Hopf Algebras

This volume contains the proceedings of the International Conference on Groups, Rings, Group Rings, and Hopf Algebras, held October 2–4, 2015 at Loyola University, Chicago, IL, and the AMS Special Session on Groups, Rings, Group Rings, and Hopf Algebras, held October 3–4, 2015, at Loyola University, Chicago, IL. Both conferences were held in honor of Donald S. Passman's 75th Birthday. Centered in the area of group rings and algebras, this volume contains a mixture of cutting edge research topics in group theory, ring theory, algebras and their representations, Hopf algebras and quantum groups.

Systolic Geometry and Topology
  • Language: en
  • Pages: 238

Systolic Geometry and Topology

The systole of a compact metric space $X$ is a metric invariant of $X$, defined as the least length of a noncontractible loop in $X$. When $X$ is a graph, the invariant is usually referred to as the girth, ever since the 1947 article by W. Tutte. The first nontrivial results for systoles of surfaces are the two classical inequalities of C. Loewner and P. Pu, relying on integral-geometric identities, in the case of the two-dimensional torus and real projective plane, respectively. Currently, systolic geometry is a rapidly developing field, which studies systolic invariants in their relation to other geometric invariants of a manifold. This book presents the systolic geometry of manifolds and ...

Classifying Spaces of Sporadic Groups
  • Language: en
  • Pages: 310

Classifying Spaces of Sporadic Groups

For each of the 26 sporadic finite simple groups, the authors construct a 2-completed classifying space using a homotopy decomposition in terms of classifying spaces of suitable 2-local subgroups. This construction leads to an additive decomposition of the mod 2 group cohomology.

Canadian Journal of Mathematics
  • Language: en
  • Pages: 226

Canadian Journal of Mathematics

  • Type: Magazine
  • -
  • Published: 1994
  • -
  • Publisher: Unknown

None

Canadian Mathematical Bulletin
  • Language: en
  • Pages: 128

Canadian Mathematical Bulletin

  • Type: Magazine
  • -
  • Published: 1995-12
  • -
  • Publisher: Unknown

None