You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
When researchers gather around lunch tables, at conferences, or in bars, there are some topics that are more or less compulsory. The discussions are about the ho- less management of the university or the lab where they are working, the lack of funding for important research, politicians’ inability to grasp the potential of a p- ticularly promising ?eld, and the endless series of committees that seem to produce very little progress. It is common to meet excellent researchers claiming that they have almost no time to do research because writing applications, lecturing, and - tending to committee work seem to take most of their time. Very few ever come into a position to do something about it...
The problem of solving large, sparse, linear systems of algebraic equations is vital in scientific computing, even for applications originating from quite different fields. A Survey of Preconditioned Iterative Methods presents an up to date overview of iterative methods for numerical solution of such systems. Typically, the methods considered are w
To make full use of the ever increasing hardware capabilities of modern com puters, it is necessary to speedily enhance the performance and reliability of the software as well, and often without having a suitable mathematical theory readily available. In the handling of more and more complex real-life numerical problems in all sorts of applications, a modern object-oriented de sign and implementation of software tools has become a crucial component. The considerable challenges posed by the demand for efficient object-oriented software in all areas of scientific computing make it necessary to exchange ideas and experiences from as many different sources as possible. Motivated by the success o...
13. 2 Abstract Saddle Point Problems . 282 13. 3 Preconditioned Iterative Methods . 283 13. 4 Examples of Saddle Point Problems 286 13. 5 Discretizations of Saddle Point Problems. 290 13. 6 Numerical Results . . . . . . . . . . . . . 295 III GEOMETRIC MODELLING 299 14 Surface Modelling from Scattered Geological Data 301 N. P. Fremming, @. Hjelle, C. Tarrou 14. 1 Introduction. . . . . . . . . . . 301 14. 2 Description of Geological Data 302 14. 3 Triangulations . . . . . . . . 304 14. 4 Regular Grid Models . . . . . 306 14. 5 A Composite Surface Model. 307 14. 6 Examples . . . . . . 312 14. 7 Concluding Remarks. . . . . 314 15 Varioscale Surfaces in Geographic Information Systems 317 G. Misun...
Looking back at the years that have passed since the realization of the very first electronic, multi-purpose computers, one observes a tremendous growth in hardware and software performance. Today, researchers and engi neers have access to computing power and software that can solve numerical problems which are not fully understood in terms of existing mathemati cal theory. Thus, computational sciences must in many respects be viewed as experimental disciplines. As a consequence, there is a demand for high quality, flexible software that allows, and even encourages, experimentation with alternative numerical strategies and mathematical models. Extensibil ity is then a key issue; the software...
This open access book describes Smittestopp, the first Norwegian system for digital contact tracing of Covid-19 infections, which was developed in March and early April 2020. The system was deployed after five weeks of development and was active for a little more than two months, when a drop in infection levels in Norway and privacy concerns led to shutting it down. The intention of this book is twofold. First, it reports on the design choices made in the development phase. Second, as one of the only systems in the world that collected population data into a central database and which was used for an entire population, we can share experience on how the design choices impacted the system's operation. By sharing lessons learned and the challenges faced during the development and deployment of the technology, we hope that this book can be a valuable guide for experts from different domains, such as big data collection and analysis, application development, and deployment in a national population, as well as digital tracing.
Targeted at students and researchers in computational sciences who need to develop computer codes for solving PDEs, the exposition here is focused on numerics and software related to mathematical models in solid and fluid mechanics. The book teaches finite element methods, and basic finite difference methods from a computational point of view, with the main emphasis on developing flexible computer programs, using the numerical library Diffpack. Diffpack is explained in detail for problems including model equations in applied mathematics, heat transfer, elasticity, and viscous fluid flow. All the program examples, as well as Diffpack for use with this book, are available on the Internet. XXXXXXX NEUER TEXT This book is for researchers who need to develop computer code for solving PDEs. Numerical methods and the application of Diffpack are explained in detail. Diffpack is a modern C++ development environment that is widely used by industrial scientists and engineers working in areas such as oil exploration, groundwater modeling, and materials testing. All the program examples, as well as a test version of Diffpack, are available for free over the Internet.
This open access book bridges common tools in medical imaging and neuroscience with the numerical solution of brain modelling PDEs. The connection between these areas is established through the use of two existing tools, FreeSurfer and FEniCS, and one novel tool, the SVM-Tk, developed for this book. The reader will learn the basics of magnetic resonance imaging and quickly proceed to generating their first FEniCS brain meshes from T1-weighted images. The book's presentation concludes with the reader solving a simplified PDE model of gadobutrol diffusion in the brain that incorporates diffusion tensor images, of various resolution, and complex, multi-domain, variable-resolution FEniCS meshes with detailed markings of anatomical brain regions. After completing this book, the reader will have a solid foundation for performing patient-specific finite element simulations of biomechanical models of the human brain.
The papers in this volume were selected for presentation at the 15th International Meshing Roundtable, held September 17–20, 2006 in Birmingham, Alabama, U.S.A.. The conference was started by Sandia National Laboratories in 1992 as a small meeting of organizations striving to establish a common focus for research and development in the field of mesh generation. Now after 15 consecutive years, the International Meshing Roundtable has become recognized as an international focal point annually attended by researchers and developers from dozens of countries around the world. The 15th International Meshing Roundtable consists of technical presentations from contributed papers, keynote and invit...
After reading this book, students should be able to analyze computational problems in linear algebra such as linear systems, least squares- and eigenvalue problems, and to develop their own algorithms for solving them. Since these problems can be large and difficult to handle, much can be gained by understanding and taking advantage of special structures. This in turn requires a good grasp of basic numerical linear algebra and matrix factorizations. Factoring a matrix into a product of simpler matrices is a crucial tool in numerical linear algebra, because it allows us to tackle complex problems by solving a sequence of easier ones. The main characteristics of this book are as follows: It is...