You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Designed for teaching astrophysics to physics students at advanced undergraduate or beginning graduate level, this textbook also provides an overview of astrophysics for astrophysics graduate students, before they delve into more specialized volumes. Assuming background knowledge at the level of a physics major, the textbook develops astrophysics from the basics without requiring any previous study in astronomy or astrophysics. Physical concepts, mathematical derivations and observational data are combined in a balanced way to provide a unified treatment. Topics such as general relativity and plasma physics, which are not usually covered in physics courses but used extensively in astrophysics, are developed from first principles. While the emphasis is on developing the fundamentals thoroughly, recent important discoveries are highlighted at every stage.
A good working knowledge of fluid mechanics and plasma physics is essential for the modern astrophysicist. This graduate textbook provides a clear, pedagogical introduction to these core subjects. Assuming an undergraduate background in physics, this book develops fluid mechanics and plasma physics from first principles. This book is unique because it presents neutral fluids and plasmas in a unified scheme, clearly indicating both their similarities and their differences. Also, both the macroscopic (continuum) and microscopic (particle) theories are developed, establishing the connections between them. Throughout, key examples from astrophysics are used, though no previous knowledge of astronomy is assumed. Exercises are included at the end of chapters to test the reader's understanding. This textbook is aimed primarily at astrophysics graduate students. It will also be of interest to advanced students in physics and applied mathematics seeking a unified view of fluid mechanics and plasma physics, encompassing both the microscopic and macroscopic theories.
The 11-year cycle of sunspots is one of the most intriguing natural cycles known to mankind. This book explores the fascinating science behind these phenomena and gives an insider's view of the history of the field.
This textbook provides a comprehensive one-semester course on advanced electromagnetic theory written from the modern perspective covering all important topics that a professional physicist needs to know. Starting from Maxwell's equations, electrostatics and magnetostatics, this book goes on to discuss such topics as relativistic electrodynamics, emission of electromagnetic radiation and plasma physics. It contains solved examples and exercises for students to highlight the concepts in each chapter.
The cycle of day and night and the cycle of seasons are two familiar natural cycles around which many human activities are organized. But is there a third natural cycle of importance for us humans? On 13 March 1989, six million people in Canada went without electricity for many hours: a large explosion on the sun was discovered as the cause of this blackout. Such explosions occur above sunspots, dark features on the surface of the Sun that have been observed through telescopes since the time of Galileo. The number of sunspots has been found to wax and wane over a period of 11 years. Although this cycle was discovered less than two centuries ago, it is becoming increasingly important for us a...
Leading experts present the current state of knowledge of the subject of magnetoconvection from the viewpoint of applied mathematics.
An up-to-date comprehensive text useful for graduate students and academic researchers in the field of energy transfers in fluid flows. The initial part of the text covers discussion on energy transfer formalism in hydrodynamics and the latter part covers applications including passive scalar, buoyancy driven flows, magnetohydrodynamic (MHD), dynamo, rotating flows and compressible flows. Energy transfers among large-scale modes play a critical role in nonlinear instabilities and pattern formation and is discussed comprehensively in the chapter on buoyancy-driven flows. It derives formulae to compute Kolmogorov's energy flux, shell-to-shell energy transfers and locality. The book discusses the concept of energy transfer formalism which helps in calculating anisotropic turbulence.
The rail-based transit system is a popular public transportation option, not just with members of the public but also with policy makers looking to install a form of convenient and rapid travel. Even for moving bulk freight long distances, a rail-based system is the most sustainable transportation system currently available. The Handbook of Research on Emerging Innovations in Rail Transportation Engineering presents the latest research on next-generation public transportation infrastructures. Emphasizing a diverse set of topics related to rail-based transportation such as funding issues, policy design, traffic planning and forecasting, and engineering solutions, this comprehensive publication is an essential resource for transportation planners, engineers, policymakers, and graduate-level engineering students interested in uncovering research-based solutions, recommendations, and examples of modern rail transportation systems.
A comprehensive and engaging textbook, covering the entire astrophysics curriculum in one volume.