You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Evolution is a critical challenge for many areas of science, technology and development of society. The book reviews general evolutionary facts such as origin of life and evolution of the genome and clues to evolution through simple systems. Emerging areas of science such as "systems biology" and "bio-complexity" are founded on the idea that phenomena need to be understood in the context of highly interactive processes operating at different levels and on different scales. This is where physics meets complexity in nature, and where we must begin to learn about complexity if we are to understand it. Similarly, there is an increasingly urgent need to understand and predict the evolutionary beh...
This volume comprises the proceedings of a NATO Advanced Study In stitute held at Geilo, Norway, April 6 -16 1999. The ASI was the fifteenth in a series held biannually on topics related to cooperative phenomena and phase transitions, in this case applied to soft condensed matter and its configurations, dynamics and functionality. It addressed the current experimental and theoretical knowledge of the physical properties of soft condensed matter such as polymers, gels, complex fluids, colloids, granular materials and biomaterials. The main purpose of the lectures was to obtain basic understanding of important aspects in relating molecular configurations and dynamics to macroscopic properties and biological functionality. To our knowledge, the term Soft Condensed Matter was actually coined and used for the first time in 1989 at Geilo and some selected topics of soft matter were also given at Geilo in 1991, 1993 and 1995. A return to this subject 10 years after its instigation thus allowed a fresh look and a possibility for defining new directions for research.
This volume comprises the proceedings of a NATO Advanced Study Institute held at Geilo, Norway, 24 March - 3 April 2003, the seventeenth ASI in a series held every two years since 1971. The objective of this ASI was to identify and discuss areas where synergism between modern physics, soft condensed matter and biology might be most fruitful. The main pedagogical approach was to have lecturers focussing on basic understanding of important aspects of the relative role of the various interaction- electrostatic, hydrophobic, steric, conformational, van der Waals etc. Soft condensed matter and the connection between physics and biology have been the themes of several earlier Geilo Schools. A retu...
This book reviews the synergism between various fields of research that are confronted with networks, such as genetic and metabolic networks, social networks, the Internet and ecological systems. In many cases, the interacting networks manifest so-called emergent properties that are not possessed by any of the individual components. Knowledge gained from the study of complex non-biological systems can be applied to the intricate braided relationships that govern cellular functions.
Magnetism encompasses a wide range of systems and physical phenomena, and its study has posed and exposed both important fundamental problems and many practical applications. Recently, several entirely new phenomena have thus been discovered, generated through cooperative behaviour which could not have been predicted from a knowledge of `one-spin' states. At the same time, advances in sample preparation, experimental technique, apparatus and radiation sources, have led to increasing precision in the investigation and exposure of greater subtleties in magnetic thin films, multilayers and other systems. Examples of unexpected and conceptually new phenomena occur in strongly correlated and fluc...
Recent years have seen a growing interest in and activity at the interface between physics and biology, with the realization that both subjects have a great deal to learn from and to teach to one another. A particularly promising aspect of this interface concerns the area of cooperative phenomena and phase transitions. The present book addresses both the structure and motion of biological materials and the increasingly complex behaviour that arises out of interactions in large systems, giving rise to self organization, adaptation, selection and evolution: concepts of interest not only to biology and living systems but also within condensed matter physics. The approach adopted by Physics of Biomaterials: Fluctuations, Self Assembly and Evolution is tutorial, but the book is fully up to date with the latest research. Written at a level appropriate to graduate researchers, preferably with a background either in condensed matter physics or theoretical or physically-oriented experimental biology.
This volume comprises the proceedings of a NATO Advanced Study Institute held in Geilo, Norway, between 4 - 14 April 1989. This Institute was the tenth in a series held at Geilo on the subject of phase transitions. It was the first to be concerned with the growing area of soft condensed matter, which is neither ordinary solids nor ordinary liquids, but somewhere in between. The Institute brought together many lecturers, students and active researchers in the field from a wide range of NATO and some non-NATO countries, with financial support principally from the NATO Scientific Affairs Division but also from Institutt for energiteknikk, the Nor wegian Research Council for Science and the Huma...
This volume contains the proceedings of a NATO Advanced study Institute held at Geilo, Norway between 2 - 12 april 1991. This institute was the eleventh in a series held biannually at Geilo on the subject of phase transitions. It was intended to capture the latest ideas on selforgan ized patterns and criticality. The Institute brought together many lecturers, students and active re searchers in the field from a wide range of NATO and non-NATO countries. The main financial support came from the NATO scientific Affairs Divi sion, but additional support was obtained from the Norwegian Research Council for Science and the Humanities (NAVF) and Institutt for energi teknikk. The organizers would l...
Many mesoscopic systems display `adaptive' behaviour - changes in some physical property that results from a small change in an internal or external driving force. There is a kind of progression in adaptive phenomena, from quantum mesoscopics to complex, evolved cooperative systems and large scale events like turbulence. The field of mesoscopic magnetism, especially quantum coherence and quantum tunnelling in spin systems, and the coupling between mesoscopic magnetism and mesoscopic transport is currently a very active area of solid state physics. `Dephasing' is an important concept in mesoscopic systems like these. A basic question is the limit at which quantum mechanics breaks down and what it can be replaced with. Another interesting crossover is that between complexity and large excursions or events, with turbulence as a prototype example. The book also contains a discussion of finance. Qualitatively speaking, turbulence and financial markets are apparently similar, so our understanding of turbulence may be relevant to understanding price fluctuations.
Includes entries for maps and atlases.