Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Numerical Methods for Two-phase Incompressible Flows
  • Language: en
  • Pages: 487

Numerical Methods for Two-phase Incompressible Flows

This book is the first monograph providing an introduction to and an overview of numerical methods for the simulation of two-phase incompressible flows. The Navier-Stokes equations describing the fluid dynamics are examined in combination with models for mass and surfactant transport. The book pursues a comprehensive approach: important modeling issues are treated, appropriate weak formulations are derived, level set and finite element discretization techniques are analyzed, efficient iterative solvers are investigated, implementational aspects are considered and the results of numerical experiments are presented. The book is aimed at M Sc and PhD students and other researchers in the fields of Numerical Analysis and Computational Engineering Science interested in the numerical treatment of two-phase incompressible flows.

Summary of Flow Modulation and Fluid-Structure Interaction Findings
  • Language: en
  • Pages: 434

Summary of Flow Modulation and Fluid-Structure Interaction Findings

The Collaborative Research Center SFB 401: Flow Modulation and Fluid-Structure Interaction at Airplane Wings investigates numerically and experimentally fundamental problems of very high capacity aircraft having large elastic wings. This issue summarizes the findings of the 12-year research program at RWTH Aachen University which was funded by the Deutsche Forschungsgemeinschaft (DFG) from 1997 through 2008. The research program covered the following three main topics of large transport aircraft: (i) Model flow, wakes, and vortices of airplanes in high-lift-configuration, (ii) Numerical tools for large scale adaptive flow simulation based on multiscale analysis and a parametric mapping concept for grid generation, and (iii) Validated computational design tools based on direct aeroelastic simulation with reduced structural models.

Transport Processes at Fluidic Interfaces
  • Language: en
  • Pages: 677

Transport Processes at Fluidic Interfaces

  • Type: Book
  • -
  • Published: 2017-07-13
  • -
  • Publisher: Birkhäuser

There are several physico-chemical processes that determine the behavior of multiphase fluid systems – e.g., the fluid dynamics in the different phases and the dynamics of the interface(s), mass transport between the fluids, adsorption effects at the interface, and transport of surfactants on the interface – and result in heterogeneous interface properties. In general, these processes are strongly coupled and local properties of the interface play a crucial role. A thorough understanding of the behavior of such complex flow problems must be based on physically sound mathematical models, which especially account for the local processes at the interface. This book presents recent findings ...

Multigrid Methods IV
  • Language: en
  • Pages: 360

Multigrid Methods IV

  • Type: Book
  • -
  • Published: 2012-12-06
  • -
  • Publisher: Birkhäuser

This volume contains a selection from the papers presented at the Fourth European Multigrid Conference, held in Amsterdam, July 6-9,1993. There were 78 registered participants from 14 different countries, and 56 presentations were given. The preceding conferences in this series were held in Cologne (1981, 1985) and in Bonn (1990). Also at the other side of the Atlantic special multigrid conferences are held regularly, at intervals of two years, always in Copper Mountain, Colorado, US. The Sixth Copper Mountain Conference on Multigrid Methods took place in April, 1993. Circumstances prevented us from putting a larger time interval between the Copper and Amsterdam meetings. The next European m...

Multigrid Methods V
  • Language: en
  • Pages: 344

Multigrid Methods V

This volume contains a selection from the papers presented at the Fifth European Multigrid Conference, held in Stuttgart, October 1996. All contributions were carefully refereed. The conference was organized by the Institute for Computer Applications (ICA) of the University of Stuttgart, in cooperation with the GAMM Committee for Scientific Computing, SFB 359 and 404 and the research network WiR Ba-Wü. The list of topics contained lectures on Multigrid Methods: robustness, adaptivity, wavelets, parallelization, application in computational fluid dynamics, porous media flow, optimisation and computational mechanics. A considerable part of the talks focused on algebraic multigrid methods.

Parallel-in-Time Integration Methods
  • Language: en
  • Pages: 134

Parallel-in-Time Integration Methods

This volume includes contributions from the 9th Parallel-in-Time (PinT) workshop, an annual gathering devoted to the field of time-parallel methods, aiming to adapt existing computer models to next-generation machines by adding a new dimension of scalability. As the latest supercomputers advance in microprocessing ability, they require new mathematical algorithms in order to fully realize their potential for complex systems. The use of parallel-in-time methods will provide dramatically faster simulations in many important areas, including biomedical (e.g., heart modeling), computational fluid dynamics (e.g., aerodynamics and weather prediction), and machine learning applications. Computation...

Finite Elements and Fast Iterative Solvers
  • Language: en
  • Pages: 495

Finite Elements and Fast Iterative Solvers

A practical graduate text on Scientific Computing with a focus on numerical solution of partial differential equations and numerical linear algebra. This book, and its associated freely downloadable MATLAB software, is relevant to engineers, applied mathematicians, numerical analysts, and people working in interdisciplinary Scientific Computing.

Numerical Challenges in Lattice Quantum Chromodynamics
  • Language: en
  • Pages: 197

Numerical Challenges in Lattice Quantum Chromodynamics

Lattice gauge theory is a fairly young research area in Theoretical Particle Physics. It is of great promise as it offers the framework for an ab-initio treatment of the nonperturbative features of strong interactions. Ever since its adolescence the simulation of quantum chromodynamics has attracted the interest of numerical analysts and there is growing interdisciplinary engage ment between theoretical physicists and applied mathematicians to meet the grand challenges of this approach. This volume contains contributions of the interdisciplinary workshop "Nu merical Challenges in Lattice Quantum Chromo dynamics" that the Institute of Applied Computer Science (IAI) at Wuppertal University tog...

Domain Decomposition Methods - Algorithms and Theory
  • Language: en
  • Pages: 482

Domain Decomposition Methods - Algorithms and Theory

This book offers a comprehensive presentation of some of the most successful and popular domain decomposition preconditioners for finite and spectral element approximations of partial differential equations. It places strong emphasis on both algorithmic and mathematical aspects. It covers in detail important methods such as FETI and balancing Neumann-Neumann methods and algorithms for spectral element methods.

Geometrically Unfitted Finite Element Methods and Applications
  • Language: en
  • Pages: 371

Geometrically Unfitted Finite Element Methods and Applications

  • Type: Book
  • -
  • Published: 2018-03-13
  • -
  • Publisher: Springer

This book provides a snapshot of the state of the art of the rapidly evolving field of integration of geometric data in finite element computations. The contributions to this volume, based on research presented at the UCL workshop on the topic in January 2016, include three review papers on core topics such as fictitious domain methods for elasticity, trace finite element methods for partial differential equations defined on surfaces, and Nitsche’s method for contact problems. Five chapters present original research articles on related theoretical topics, including Lagrange multiplier methods, interface problems, bulk-surface coupling, and approximation of partial differential equations on moving domains. Finally, two chapters discuss advanced applications such as crack propagation or flow in fractured poroelastic media. This is the first volume that provides a comprehensive overview of the field of unfitted finite element methods, including recent techniques such as cutFEM, traceFEM, ghost penalty, and augmented Lagrangian techniques. It is aimed at researchers in applied mathematics, scientific computing or computational engineering.