Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Machine Learning and Knowledge Discovery in Databases
  • Language: en
  • Pages: 669

Machine Learning and Knowledge Discovery in Databases

The multi-volume set LNAI 13713 until 13718 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2022, which took place in Grenoble, France, in September 2022. The 236 full papers presented in these proceedings were carefully reviewed and selected from a total of 1060 submissions. In addition, the proceedings include 17 Demo Track contributions. The volumes are organized in topical sections as follows: Part I: Clustering and dimensionality reduction; anomaly detection; interpretability and explainability; ranking and recommender systems; transfer and multitask learning; Part II: Networks and graphs; knowledge grap...

Machine Learning and Knowledge Discovery in Databases
  • Language: en
  • Pages: 731

Machine Learning and Knowledge Discovery in Databases

  • Type: Book
  • -
  • Published: 2013-08-28
  • -
  • Publisher: Springer

This three-volume set LNAI 8188, 8189 and 8190 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2013, held in Prague, Czech Republic, in September 2013. The 111 revised research papers presented together with 5 invited talks were carefully reviewed and selected from 447 submissions. The papers are organized in topical sections on reinforcement learning; Markov decision processes; active learning and optimization; learning from sequences; time series and spatio-temporal data; data streams; graphs and networks; social network analysis; natural language processing and information extraction; ranking and recommender systems; matrix and tensor analysis; structured output prediction, multi-label and multi-task learning; transfer learning; bayesian learning; graphical models; nearest-neighbor methods; ensembles; statistical learning; semi-supervised learning; unsupervised learning; subgroup discovery, outlier detection and anomaly detection; privacy and security; evaluation; applications; and medical applications.

Advances in Intelligent Data Analysis XIX
  • Language: en
  • Pages: 454

Advances in Intelligent Data Analysis XIX

This book constitutes the proceedings of the 19th International Symposium on Intelligent Data Analysis, IDA 2021, which was planned to take place in Porto, Portugal. Due to the COVID-19 pandemic the conference was held online during April 26-28, 2021. The 35 papers included in this book were carefully reviewed and selected from 113 submissions. The papers were organized in topical sections named: modeling with neural networks; modeling with statistical learning; modeling language and graphs; and modeling special data formats.

Artificial Neural Networks and Machine Learning – ICANN 2018
  • Language: en
  • Pages: 866

Artificial Neural Networks and Machine Learning – ICANN 2018

  • Type: Book
  • -
  • Published: 2018-10-02
  • -
  • Publisher: Springer

This three-volume set LNCS 11139-11141 constitutes the refereed proceedings of the 27th International Conference on Artificial Neural Networks, ICANN 2018, held in Rhodes, Greece, in October 2018. The papers presented in these volumes was carefully reviewed and selected from total of 360 submissions. They are related to the following thematic topics: AI and Bioinformatics, Bayesian and Echo State Networks, Brain Inspired Computing, Chaotic Complex Models, Clustering, Mining, Exploratory Analysis, Coding Architectures, Complex Firing Patterns, Convolutional Neural Networks, Deep Learning (DL), DL in Real Time Systems, DL and Big Data Analytics, DL and Big Data, DL and Forensics, DL and Cybers...

Low-Power Computer Vision
  • Language: en
  • Pages: 436

Low-Power Computer Vision

  • Type: Book
  • -
  • Published: 2022-02-22
  • -
  • Publisher: CRC Press

Energy efficiency is critical for running computer vision on battery-powered systems, such as mobile phones or UAVs (unmanned aerial vehicles, or drones). This book collects the methods that have won the annual IEEE Low-Power Computer Vision Challenges since 2015. The winners share their solutions and provide insight on how to improve the efficiency of machine learning systems.

Computer Security – ESORICS 2024
  • Language: en
  • Pages: 487

Computer Security – ESORICS 2024

None

Artificial Neural Networks - ICANN 2010
  • Language: en
  • Pages: 617

Artificial Neural Networks - ICANN 2010

This three volume set LNCS 6352, LNCS 6353, and LNCS 6354 constitutes the refereed proceedings of the 20th International Conference on Artificial Neural Networks, ICANN 2010, held in Thessaloniki, Greece, in September 2010. The 102 revised full papers, 68 short papers and 29 posters presented were carefully reviewed and selected from 241 submissions. The first volume is divided in topical sections on ANN applications, Bayesian ANN, bio inspired – spiking ANN, biomedical ANN, computational neuroscience, feature selection/parameter identification and dimensionality reduction, filtering, genetic – evolutionary algorithms, and image – video and audio processing.

Handbook of Research on Cloud Computing and Big Data Applications in IoT
  • Language: en
  • Pages: 637

Handbook of Research on Cloud Computing and Big Data Applications in IoT

  • Type: Book
  • -
  • Published: 2019-04-12
  • -
  • Publisher: IGI Global

Today, cloud computing, big data, and the internet of things (IoT) are becoming indubitable parts of modern information and communication systems. They cover not only information and communication technology but also all types of systems in society including within the realms of business, finance, industry, manufacturing, and management. Therefore, it is critical to remain up-to-date on the latest advancements and applications, as well as current issues and challenges. The Handbook of Research on Cloud Computing and Big Data Applications in IoT is a pivotal reference source that provides relevant theoretical frameworks and the latest empirical research findings on principles, challenges, and applications of cloud computing, big data, and IoT. While highlighting topics such as fog computing, language interaction, and scheduling algorithms, this publication is ideally designed for software developers, computer engineers, scientists, professionals, academicians, researchers, and students.

Cognitive Machine Intelligence
  • Language: en
  • Pages: 373

Cognitive Machine Intelligence

  • Type: Book
  • -
  • Published: 2024-08-28
  • -
  • Publisher: CRC Press

Cognitive Machine Intelligence: Applications, Challenges, and Related Technologies offers a compelling exploration of the transformative landscape shaped by the convergence of machine intelligence, artificial intelligence, and cognitive computing. In this book, the authors navigate through the intricate realms of technology, unveiling the profound impact of cognitive machine intelligence on diverse fields such as communication, healthcare, cybersecurity, and smart city development. The chapters present study on robots and drones to the integration of machine learning with wireless communication networks, IoT, quantum computing, and beyond. The book explores the essential role of machine lear...

Machine Learning and Knowledge Discovery in Databases
  • Language: en
  • Pages: 898

Machine Learning and Knowledge Discovery in Databases

  • Type: Book
  • -
  • Published: 2017-12-29
  • -
  • Publisher: Springer

The three volume proceedings LNAI 10534 – 10536 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2017, held in Skopje, Macedonia, in September 2017. The total of 101 regular papers presented in part I and part II was carefully reviewed and selected from 364 submissions; there are 47 papers in the applied data science, nectar and demo track. The contributions were organized in topical sections named as follows: Part I: anomaly detection; computer vision; ensembles and meta learning; feature selection and extraction; kernel methods; learning and optimization, matrix and tensor factorization; networks and graphs; neural networks and deep learning. Part II: pattern and sequence mining; privacy and security; probabilistic models and methods; recommendation; regression; reinforcement learning; subgroup discovery; time series and streams; transfer and multi-task learning; unsupervised and semisupervised learning. Part III: applied data science track; nectar track; and demo track.