You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Spectral analysis requires subjective decisions which influence the final estimate and mean that different analysts can obtain different results from the same stationary stochastic observations. Statistical signal processing can overcome this difficulty, producing a unique solution for any set of observations but that is only acceptable if it is close to the best attainable accuracy for most types of stationary data. This book describes a method which fulfils the above near-optimal-solution criterion, taking advantage of greater computing power and robust algorithms to produce enough candidate models to be sure of providing a suitable candidate for given data.
None
Provides a foundation to modern data analysis and econometric practice. Contains many examples and exercises with data from developing countries, available for immediate use on the floppy disk provided.
This revised and updated edition of A Guide to Modern Econometrics continues to explore a wide range of topics in modern econometrics by focusing on what is important for doing and understanding empirical work. It serves as a guide to alternative techniques with the emphasis on the intuition behind the approaches and their practical relevance. New material includes Monte Carlo studies, weak instruments, nonstationary panels, count data, duration models and the estimation of treatment effects. Features of this book include: Coverage of a wide range of topics, including time series analysis, cointegration, limited dependent variables, panel data analysis and the generalized method of moments Empirical examples drawn from a wide variety of fields including labour economics, finance, international economics, environmental economics and macroeconomics. End-of-chapter exercises review key concepts in light of empirical examples.
Spectral analysis requires subjective decisions which influence the final estimate and mean that different analysts can obtain different results from the same stationary stochastic observations. Statistical signal processing can overcome this difficulty, producing a unique solution for any set of observations but that is only acceptable if it is close to the best attainable accuracy for most types of stationary data. This book describes a method which fulfils the above near-optimal-solution criterion, taking advantage of greater computing power and robust algorithms to produce enough candidate models to be sure of providing a suitable candidate for given data.
Monograph on statistical analysis methodology for measurement of geographic distribution - develops the theory of spatial autocorrelation together with sample procedures, and considers their use in the presentation and evaluation of maps showing statistical tables in the fields of economic geography and human geography. Bibliography pp. 173 to 176 and graphs.