You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The fast growing field of mathematical biology addresses biological questions using mathematical models from areas such as dynamical systems, probability, statistics, and discrete mathematics. This book considers models that are described by systems of partial differential equations, and it focuses on modeling, rather than on numerical methods and simulations. The models studied are concerned with population dynamics, cancer, risk of plaque growth associated with high cholesterol, and wound healing. A rich variety of open problems demonstrates the exciting challenges and opportunities for research at the interface of mathematics and biology. This book primarily addresses students and researchers in mathematics who do not necessarily have any background in biology and who may have had little exposure to PDEs.
Measure and integration, metric spaces, the elements of functional analysis in Banach spaces, and spectral theory in Hilbert spaces — all in a single study. Only book of its kind. Unusual topics, detailed analyses. Problems. Excellent for first-year graduate students, almost any course on modern analysis. Preface. Bibliography. Index.
Largely self-contained, this three-part treatment focuses on elliptic and evolution equations, concluding with a series of independent topics directly related to the methods and results of the preceding sections. 1969 edition.
Stochastic Differential Equations and Applications, Volume 1 covers the development of the basic theory of stochastic differential equation systems. This volume is divided into nine chapters. Chapters 1 to 5 deal with the basic theory of stochastic differential equations, including discussions of the Markov processes, Brownian motion, and the stochastic integral. Chapter 6 examines the connections between solutions of partial differential equations and stochastic differential equations, while Chapter 7 describes the Girsanov's formula that is useful in the stochastic control theory. Chapters 8 and 9 evaluate the behavior of sample paths of the solution of a stochastic differential system, as time increases to infinity. This book is intended primarily for undergraduate and graduate mathematics students.
With this book, even readers unfamiliar with the field can acquire sufficient background to understand research literature related to the theory of parabolic and elliptic equations. 1964 edition.
Graduate-level text surveys games of fixed duration, games of pursuit and evasion, the computation of saddle points, games of survival, games with restricted phase coordinates, and N-person games. 1971 edition.
Intended for students who have already completed a one-year course in elementary calculus, this two-part treatment advances from functions of one variable to those of several variables. Solutions. 1971 edition.
This book on mathematical modeling of biological processes includes a wide selection of biological topics that demonstrate the power of mathematics and computational codes in setting up biological processes with a rigorous and predictive framework. Topics include: enzyme dynamics, spread of disease, harvesting bacteria, competition among live species, neuronal oscillations, transport of neurofilaments in axon, cancer and cancer therapy, and granulomas. Complete with a description of the biological background and biological question that requires the use of mathematics, this book is developed for graduate students and advanced undergraduate students with only basic knowledge of ordinary differential equations and partial differential equations; background in biology is not required. Students will gain knowledge on how to program with MATLAB without previous programming experience and how to use codes in order to test biological hypothesis.
This self-contained text details developments in the theory of generalized functions and the theory of distributions, and it systematically applies them to a variety of problems in partial differential equations. 1963 edition.
This book is based on a one semester course that the authors have been teaching for several years, and includes two sets of case studies. The first includes chemostat models, predator-prey interaction, competition among species, the spread of infectious diseases, and oscillations arising from bifurcations. In developing these topics, readers will also be introduced to the basic theory of ordinary differential equations, and how to work with MATLAB without having any prior programming experience. The second set of case studies were adapted from recent and current research papers to the level of the students. Topics have been selected based on public health interest. This includes the risk of ...