You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
An accessible history and philosophical commentary on our notion of infinity. How can the infinite, a subject so remote from our finite experience, be an everyday tool for the working mathematician? Blending history, philosophy, mathematics, and logic, Shaughan Lavine answers this question with exceptional clarity. Making use of the mathematical work of Jan Mycielski, he demonstrates that knowledge of the infinite is possible, even according to strict standards that require some intuitive basis for knowledge. Praise for Understanding the Infinite “Understanding the Infinite is a remarkable blend of mathematics, modern history, philosophy, and logic, laced with refreshing doses of common se...
Although this book deals with basic set theory (in general, it stops short of areas where model-theoretic methods are used) on a rather advanced level, it does it at an unhurried pace. This enables the author to pay close attention to interesting and important aspects of the topic that might otherwise be skipped over. Written for upper-level undergraduate and graduate students, the book is divided into two parts. The first covers pure set theory, including the basic notions, order and well-foundedness, cardinal numbers, the ordinals, and the axiom of choice and some of its consequences. The second part deals with applications and advanced topics, among them a review of point set topology, the real spaces, Boolean algebras, and infinite combinatorics and large cardinals. A helpful appendix deals with eliminability and conservation theorems, while numerous exercises supply additional information on the subject matter and help students test their grasp of the material. 1979 edition. 20 figures.
Over the years, this book has become a standard reference and guide in the set theory community. It provides a comprehensive account of the theory of large cardinals from its beginnings and some of the direct outgrowths leading to the frontiers of contemporary research, with open questions and speculations throughout.
This book presents the theory of proper forcing and its relatives from the beginning. No prior knowledge of forcing is required.
A historic Holocaust survivor's story: A daughter sets out to retrace her mother's footsteps in wartime Europe.
Model theory is concerned with the notions of definition, interpretation and structure in a very general setting, and is applied to a wide range of other areas such as set theory, geometry, algebra and computer science. This book provides an integrated introduction to model theory for graduate students.
“Proofs and Fundamentals: A First Course in Abstract Mathematics” 2nd edition is designed as a "transition" course to introduce undergraduates to the writing of rigorous mathematical proofs, and to such fundamental mathematical ideas as sets, functions, relations, and cardinality. The text serves as a bridge between computational courses such as calculus, and more theoretical, proofs-oriented courses such as linear algebra, abstract algebra and real analysis. This 3-part work carefully balances Proofs, Fundamentals, and Extras. Part 1 presents logic and basic proof techniques; Part 2 thoroughly covers fundamental material such as sets, functions and relations; and Part 3 introduces a var...
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Neutrosophy is a new branch of philosophy that studies the origin, nature, and scope of neutralities, as well as their interactions with different ideational spectra. This theory considers every notion or idea together with its opposite or negation
This volume, assembled with the collaboration of the author, presents an outline of Badiou's ambitious system. Starting from the controversial assertion that ontology is mathematics, this volume sets out the theory of the emergence of truths from the singular relationship between a subject and an event. Ranging from startling re-readings of canonical figures (Spinoza, Kant and Hegel) to decisive engagements with poetry, psychoanalysis and radical politics, Theoretical Writings is an indispensable introduction to one of the great thinkers of our time.
Mathematical Logic and Foundations of Set Theory, Proceedings of an International Colloquium Held Under the Auspices of The Israel Academy of Sciences and Humanities