You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Heavy Flavors covers the proceedings of the Third Topical Seminar on Heavy Flavors, held in San Miniato, Italy on June 17-21, 1991. The book focuses on the reactions, properties, characteristics, and transformations of heavy flavors. The publication first offers information on flavor factories and monochromatization as the way to maximum luminosity B-factories, as well as design strategies and parameters, requirements, luminosity limitations, and B-factory with monochromatization and vertical separation. The book then ponders on theoretical results in heavy quark hadroproduction; heavy flavor production at high energies; and leptonic decay constants of heavy mesons. The book examines heavy baryon transitions and the heavy quark effective theory; non universality of nucleon sea distributions probed by neutrinos and muons; and heavy flavor physics at hadron colliders. The publication is a dependable reference for readers interested in the study of heavy flavors.
The implications of the latest results from high energy experiments as well as non-accelerator experiments are discussed in this proceedings. Emphasis is given to neutrino physics, tests of the standard electroweak theory, and its extensions. Perspectives for the physics of the new decade are also considered.
The four articles of the present volume address very different topics in nuclear physics and, indeed, encompass experiments at very different kinds of exp- imental facilities. The range of interest of the articles extends from the nature of the substructure of the nucleon and the deuteron to the general properties of the nucleus, including its phase transitions and its rich and unexpected quantal properties. The first article by Fillipone and Ji reviews the present experimental and theoretical situation pertaining to our knowledge of the origin of the spin of the nucleon. Until about 20 years ago the half-integral spin of the neutron and p- ton was regarded as their intrinsic property as Dir...
The proceedings contains reviews and short communications on the following topics: status of the standard model, rare decays and CP violation, heavy quark physics, neutrino physics, Higgs bosons and electroweak breaking, nonperturbative effects in electroweak interactions, physics beyond the standard models, quantum chromodynamics and strong interactions.
None
Recently, the collaboration between theory and experiments in high-energy physics has become again more fruitful, important and practically indispensable. The contributions to this volume clearly summarize, in terms of the standard model of elementary particles, the present understanding of high-energy physics and present an outlook how to go beyond this standard model. Phenomenological aspects are stressed outlining possible extensions of the standard model with main topics covering higher order corrected electroweak interactions, CP violation, quark flavour mixing, lattice QCD, and dynamical electroweak symmetry breaking. Many new experiments are described to explore high-energy physics either by the highest available accelerators or by very high precision experiments forrare processes. Including a variety of theoretical models proposed beyond the standard model, it presents a global knowledge and a balanced view of high-energy physics reaching beyond this decade.
Effective field theories are a widely used tool in various branches of physics. This book provides a comprehensive discussion of the foundations and fundamentals of effective field theories of quantum chromodynamics (QCD) in the light quark sector with an emphasis on the study of flavour symmetries and their realizations. In this context, different types of effective field theories pertaining to various energy scales are considered and selected applications are devised. It also covers the formulation of effective field theories in a finite volume and its application in the analysis of lattice QCD data. Effective Field Theories is intended for graduate students and researchers in particle physics, hadron physics and nuclear physics. Exercises are included to help the reader deepen their understanding of the topics discussed throughout, with solutions available to lecturers.