Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Random Graphs
  • Language: en
  • Pages: 520

Random Graphs

This is a revised and updated version of the classic first edition.

Modern Graph Theory
  • Language: en
  • Pages: 408

Modern Graph Theory

An in-depth account of graph theory, written for serious students of mathematics and computer science. It reflects the current state of the subject and emphasises connections with other branches of pure mathematics. Recognising that graph theory is one of several courses competing for the attention of a student, the book contains extensive descriptive passages designed to convey the flavour of the subject and to arouse interest. In addition to a modern treatment of the classical areas of graph theory, the book presents a detailed account of newer topics, including Szemerédis Regularity Lemma and its use, Shelahs extension of the Hales-Jewett Theorem, the precise nature of the phase transition in a random graph process, the connection between electrical networks and random walks on graphs, and the Tutte polynomial and its cousins in knot theory. Moreover, the book contains over 600 well thought-out exercises: although some are straightforward, most are substantial, and some will stretch even the most able reader.

Combinatorics
  • Language: en
  • Pages: 196

Combinatorics

Combinatorics is a book whose main theme is the study of subsets of a finite set. It gives a thorough grounding in the theories of set systems and hypergraphs, while providing an introduction to matroids, designs, combinatorial probability and Ramsey theory for infinite sets. The gems of the theory are emphasized: beautiful results with elegant proofs. The book developed from a course at Louisiana State University and combines a careful presentation with the informal style of those lectures. It should be an ideal text for senior undergraduates and beginning graduates.

Graph Theory
  • Language: en
  • Pages: 191

Graph Theory

From the reviews: "Béla Bollobás introductory course on graph theory deserves to be considered as a watershed in the development of this theory as a serious academic subject. ... The book has chapters on electrical networks, flows, connectivity and matchings, extremal problems, colouring, Ramsey theory, random graphs, and graphs and groups. Each chapter starts at a measured and gentle pace. Classical results are proved and new insight is provided, with the examples at the end of each chapter fully supplementing the text... Even so this allows an introduction not only to some of the deeper results but, more vitally, provides outlines of, and firm insights into, their proofs. Thus in an elementary text book, we gain an overall understanding of well-known standard results, and yet at the same time constant hints of, and guidelines into, the higher levels of the subject. It is this aspect of the book which should guarantee it a permanent place in the literature." #Bulletin of the London Mathematical Society#1

The Art of Mathematics
  • Language: en
  • Pages: 376

The Art of Mathematics

Publisher description

Introduction to Random Graphs
  • Language: en
  • Pages: 483

Introduction to Random Graphs

From social networks such as Facebook, the World Wide Web and the Internet, to the complex interactions between proteins in the cells of our bodies, we constantly face the challenge of understanding the structure and development of networks. The theory of random graphs provides a framework for this understanding, and in this book the authors give a gentle introduction to the basic tools for understanding and applying the theory. Part I includes sufficient material, including exercises, for a one semester course at the advanced undergraduate or beginning graduate level. The reader is then well prepared for the more advanced topics in Parts II and III. A final part provides a quick introduction to the background material needed. All those interested in discrete mathematics, computer science or applied probability and their applications will find this an ideal introduction to the subject.

Linear Analysis
  • Language: en
  • Pages: 256

Linear Analysis

This introduction to functional analysis is intended for advanced undergraduate students, typically final year, who have some background in real analysis. The author's aim is not to cover the standard material in a standard way, but to present results of applications in contemporary mathematics and to show the relevance of functional analysis to other areas. Unusual topics covered include geometry of finite-dimensional spaces, invariant subspace, fixed-point theorem, and the Bishop-Phelps theorem. An outstanding set of exercises run from the elementary to the challenging.

Percolation
  • Language: en
  • Pages: 334

Percolation

This book, first published in 2006, is an account of percolation theory and its ramifications.

Littlewood's Miscellany
  • Language: en
  • Pages: 212

Littlewood's Miscellany

Littlewood's Miscellany, which includes most of the earlier work as well as much of the material Professor Littlewood collected after the publication of A Mathematician's Miscellany, allows us to see academic life in Cambridge, especially in Trinity College, through the eyes of one of its greatest figures. The joy that Professor Littlewood found in life and mathematics is reflected in the many amusing anecdotes about his contemporaries, written in his pungent, aphoristic style. The general reader should, in most instances, have no trouble following the mathematical passages. For this publication, the new material has been prepared by Béla Bollobás; his foreword is based on a talk he gave to the British Society for the History of Mathematics on the occasion of Littlewood's centenary.

Modern Graph Theory
  • Language: en
  • Pages: 422

Modern Graph Theory

An in-depth account of graph theory, written for serious students of mathematics and computer science. It reflects the current state of the subject and emphasises connections with other branches of pure mathematics. Recognising that graph theory is one of several courses competing for the attention of a student, the book contains extensive descriptive passages designed to convey the flavour of the subject and to arouse interest. In addition to a modern treatment of the classical areas of graph theory, the book presents a detailed account of newer topics, including Szemerédis Regularity Lemma and its use, Shelahs extension of the Hales-Jewett Theorem, the precise nature of the phase transition in a random graph process, the connection between electrical networks and random walks on graphs, and the Tutte polynomial and its cousins in knot theory. Moreover, the book contains over 600 well thought-out exercises: although some are straightforward, most are substantial, and some will stretch even the most able reader.