You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book applies the mathematics and concepts of quantum mechanics and quantum field theory to the modelling of interest rates and the theory of options. Particular emphasis is placed on path integrals and Hamiltonians. Financial mathematics is dominated by stochastic calculus. The present book offers a formulation that is completely independent of that approach. As such many results emerge from the ideas developed by the author. This work will be of interest to physicists and mathematicians working in the field of finance, to quantitative analysts in banks and finance firms and to practitioners in the field of fixed income securities and foreign exchange. The book can also be used as a graduate text for courses in financial physics and financial mathematics.
The Theoretical Foundations of Quantum Mechanics addresses fundamental issues that are not discussed in most books on quantum mechanics. This book focuses on analyzing the underlying principles of quantum mechanics and explaining the conceptual and theoretical underpinning of quantum mechanics. In particular, the concepts of quantum indeterminacy, quantum measurement and quantum superposition are analyzed to clarify the concepts that are implicit in the formulation of quantum mechanics. The Schrodinger equation is never solved in the book. Rather, the discussion on the fundamentals of quantum mechanics is treated in a rigorous manner based on the mathematics of quantum mechanics. The new con...
This book provides an introduction to how the mathematical tools from quantum field theory can be applied to economics and finance. Providing a range of quantum mathematical techniques for designing financial instruments, it demonstrates how a range of topics have quantum mechanical formulations, from asset pricing to interest rates.
The economic crisis of 2008 has shown that the capital markets need new theoretical and mathematical concepts to describe and price financial instruments. Focusing on interest rates and coupon bonds, this book does not employ stochastic calculus – the bedrock of the present day mathematical finance – for any of the derivations. Instead, it analyzes interest rates and coupon bonds using quantum finance. The Heath-Jarrow-Morton and the Libor Market Model are generalized by realizing the forward and Libor interest rates as an imperfectly correlated quantum field. Theoretical models have been calibrated and tested using bond and interest rates market data. Building on the principles formulated in the author's previous book (Quantum Finance, Cambridge University Press, 2004) this ground-breaking book brings together a diverse collection of theoretical and mathematical interest rate models. It will interest physicists and mathematicians researching in finance, and professionals working in the finance industry.
Why is rubber elastic? Why are leaves green? Why can a gecko climb a wall? Answering these and a myriad of other puzzles of nature, Exploring Integrated Science shows how the simplest questions that arise from our daily experiences can lead us through a chain of reasoning that explains some of the most fascinating principles of science.Written in a
A succinct introduction to the powerful and flexible combination of Hamiltonian operators and path integrals in quantum mathematics, with a practical emphasis on methodological and mathematical aspects. Essential reading for researchers and graduate students in physics, and engineers whose work touches on quantum mechanics.
An overview of how complex systems from a variety of fields can be modelled using principles of quantum mechanics; from biology and ecology, to sociology and decision-making. The mathematical basis of these models is fully described, providing a self-contained introduction for students and researchers in applied mathematics or theoretical physics.
The importance of gauge theory for elementary particle physics is by now firmly established. Recent experiments have yielded convincing evidence for the existence of intermediate bosons, the carriers of the electroweak gauge force, as well as for the presence of gluons, the carriers of the strong gauge force, in hadronic interactions. For the gauge theory of strong interactions, however, a number of important theoretical problems remain to be definitely resolved. They include the quark confinement problem, the quantitative study of the hadron mass spectrum as well as the role of topology in quantum gauge field theory. These problems require for their solution the development and application ...
The Conference on Quantum Mechanics, Elementary Particles, Quantum Cosmology and Complexity was held in honour of Professor Murray Gell-Mann's 80th birthday in Singapore on 24?26 February 2010. The conference paid tribute to Professor Gell-Mann's great achievements in the elementary particle physics. This notable birthday volume contains the presentations made at the conference by many eminent scientists, including Nobel laureates C N Yang, G 't Hooft and K Wilson. Other invited speakers include G Zweig, N Samios, M Karliner, G Karl, M Shifman, J Ellis, S Adler and A Zichichi. About Murray Gell-Mann Murray Gell-Mann, born September 15, 1929, won the 1969 Nobel Prize in physics for his work o...
This proceedings contains the talks delivered at the plenary and parallel sessions. Topics covered include e⁺e⁻ Physics at Z0, String Theory and Theory of Extended Objects, High Energy pp Physics, Non-Accelerator Particle Physics, Conformal Field Theory, e⁺e⁻ Physics below Z⁰, Structure Functions and Deep Inelastic Scattering, Neutrino Physics, Recent Developments in 2-Dimensional Gravity, Lattice Gauge Theory and Computer Simulations, CP Violation , Accelerator Physics, Cosmology and Particle Physics, Interface Between Particle and Condensed Matter Physics, Detector R&D, and Astroparticle Physics.