You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Classical harmonic analysis is an important part of modern physics and mathematics, comparable in its significance with calculus. Created in the 18th and 19th centuries as a distinct mathematical discipline it continued to develop, conquering new unexpected areas and producing impressive applications to a multitude of problems. It is widely understood that the explanation of this miraculous power stems from group theoretic ideas underlying practically everything in harmonic analysis. This book is an unusual combination of the general and abstract group theoretic approach with a wealth of very concrete topics attractive to everybody interested in mathematics. Mathematical literature on harmonic analysis abounds in books of more or less abstract or concrete kind, but the lucky combination as in this volume can hardly be found.
A collection of papers on different aspects of operator theory and complex analysis, covering the recent achievements of the Odessa-Kharkov school, where Potapov was very active. The book appeals to a wide group of mathematicians and engineers, and much of the material can be used for advanced courses and seminars.
This is the second of two volumes dedicated to the centennial of the distinguished mathematician Selim Grigorievich Krein. The companion volume is Contemporary Mathematics, Volume 733. Krein was a major contributor to functional analysis, operator theory, partial differential equations, fluid dynamics, and other areas, and the author of several influential monographs in these areas. He was a prolific teacher, graduating 83 Ph.D. students. Krein also created and ran, for many years, the annual Voronezh Winter Mathematical Schools, which significantly influenced mathematical life in the former Soviet Union. The articles contained in this volume are written by prominent mathematicians, former students and colleagues of Selim Krein, as well as lecturers and participants of Voronezh Winter Schools. They are devoted to a variety of contemporary problems in ordinary and partial differential equations, fluid dynamics, and various applications.
Polymer Stress Reactions, Volume 2: Experiments provides an overall world perspective for the field of polymer reactions caused by stress. For the reader's benefit the book is developed along several lines for ease of reference. The same studies may thus be discussed from different points of view such as type of equipment, polymer used, basic parameters, and the polymer state. Presentation by polymer state is a fundamental, i.e., a molecular approach to mechanochemistry. The discussion of each nominal polymer state includes a description of those parameters and variables which are germane to the mechanically induced reactions in that state. In contrast, the variables which are generally applicable to mechanochemistry, such as temperature and shear intensity, are subsequently treated individually. The present volume contains two main chapters. The first reviews the principal experiments on each of the most researched polymers, both natural and synthetic; the second discusses studies of the polymer state in mechanochemistry.
During his long and distinguished career, J. Rowland Higgins (1935-2020) made a substantial impact on many mathematical fields through his work on sampling theory, his deep knowledge of its history, and his service to the community. This volume is a tribute to his work and legacy, featuring chapters written by distinguished mathematicians that explore cutting-edge research in sampling, approximation, signal analysis, and other related areas. An introductory chapter provides a biography of Higgins that explores his rich and unique life, along with a bibliography of his papers; a brief history of the SampTA meetings – of which he was a Founding Member – is also included. The remaining articles are grouped into four sections – classical sampling, theoretical extensions, frame theory, and applications of sampling theory – and explore Higgins’ contributions to these areas, as well as some of the latest developments.
About one half of the papers in this volume are based on lectures which were pre sented at a conference at Leipzig University in August 1994, which was dedicated to Vladimir Petrovich Potapov. He would have been eighty years old. These have been supplemented by: (1) Historical material, based on reminiscences of former colleagues, students and associates of V.P. Potapov. (2) Translations of a number of important papers (which serve to clarify the Potapov approach to problems of interpolation and extension, as well as a number of related problems and methods) and are relatively unknown in the West. (3) Two expository papers, which have been especially written for this volume. For purposes of ...
"This book contains a comprehensive exposition of the Nevanlinna theory of meromorphic functions of one complex variable, with detailed study of deficiencies, value distribution, and asymptotic properties of meromorphic functions." "The main body of the book is a translation of the Russian original published in 1970, which has been one of the most popular sources in this field since then. New references and footnotes related to recent achievements in the topics considered in the original edition have been added and a few corrections made. A new Appendix with a survey of the results obtained after 1970 and extensive bibliography has been written by Alexandre Ermenko and James K. Langley for this English edition." "The only prerequisite for understanding material of this book is an undergraduate course in the theory of functions of one complex variable."--BOOK JACKET.
Vladimir Petrovich Potapov, as remembered by colleagues, friends and former students.- On a minimum problem in function theory and the number of roots of an algebraic equation inside the unit disc.- On tangential interpolation in reproducing kernel Hilbert modules and applications.- Notes on a Nevanlinna-Pick interpolation problem for generalized Nevanlinna functions.- The indefinite metric in the Schur interpolation problem for analytic functions, IV.- Bitangential interpolation for upper triangular operators.- Bitangential interpolation for upper triangular operators when the Pick operator is strictly positive.- Integral representations of a pair of nonnegative operators and interpolation ...