You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Over the past two decades, technologies for microsystems fabrication have made considerable progress. This has made possible a large variety of new commercial devices ranging, for example, from integrated pressure and acceleration microsensors to active micromirror arrays for image projection. In the near future, there will be a number of new devices, which will be commercialized in many application areas. The field of microsystems is characterized by its wide diversity, which requires a multidisciplinary approach for design and processes as well as in application areas. Although there is a common technological background derived from integrated circuits, it is clear that microsystems will r...
The Electrical Engineer's Handbook is an invaluable reference source for all practicing electrical engineers and students. Encompassing 79 chapters, this book is intended to enlighten and refresh knowledge of the practicing engineer or to help educate engineering students. This text will most likely be the engineer's first choice in looking for a solution; extensive, complete references to other sources are provided throughout. No other book has the breadth and depth of coverage available here. This is a must-have for all practitioners and students! The Electrical Engineer's Handbook provides the most up-to-date information in: Circuits and Networks, Electric Power Systems, Electronics, Comp...
The worlds most comprehensive and up-to-date collection of Multidisciplinary Micro and Nano technical papers. Technical Proceedings of the 2001 International Conference on Modeling and Simulation of Microsystems. Micro and Nano Fluidic Systems, MEMS, System Optimization, MEMS Applications and Characterization, Advanced Numerics, Process Modeling, Quantum Effects, Quantum Devices, Spintronics, Atomistic of Silicon Processing, Advanced Semiconductors, Circuit Modeling, Compact Modeling. Papers taken from the 2001 MSM, Hilton Head Island, USA, March. 2001.
Microfluidics and BioMEMS Applications central idea is on microfluidics, a relatively new research field which finds its niche in biomedical devices, especially on lab-on-a-chip and related products. Being the essential component in providing driving fluidic flows, an example of micropump is chosen to illustrate a complete cycle in development of microfluidic devices which include literature review, designing and modelling, fabrication and testing. A few articles are included to demonstrate the idea of tackling this research problem, and they cover the main development scope discussed earlier as well as other advanced modelling schemes for microfluidics and beyond. Scientists and students working in the areas of MEMS and microfluidics will benefit from this book, which may serve both communities as both a reference monograph and a textbook for courses in numerical simulation, and design and development of microfluidic devices.
The Cleantech conference, which runs parallel with NSTI’s Nanotech, is designed to promote advancements in traditional technologies, emerging technologies, and clean business practices, covering important developments in renewable energy, clean technologies, business and policy, bio-energy, and novel technologies, as well as environmental and clean and green advancements. Collected into its own volume for the first time, the papers from Cleantech 2007 cut across every scientific and engineering discipline to address those issues relevant to maintaining and improving the sustainability of our planet.
Over the past two decades, technologies for microsystems fabrication have made considerable progress. This has made possible a large variety of new commercial devices ranging, for example, from integrated pressure and acceleration microsensors to active micromirror arrays for image projection. In the near future, there will be a number of new devices, which will be commercialized in many application areas. The field of microsystems is characterized by its wide diversity, which requires a multidisciplinary approach for design and processes as well as in application areas. Although there is a common technological background derived from integrated circuits, it is clear that microsystems will r...
The field of materials and process integration for MEMS research has an extensive past as well as a long and promising future. Researchers, academicians and engineers from around the world are increasingly devoting their efforts on the materials and process integration issues and opportunities in MEMS devices. These efforts are crucial to sustain the long-term growth of the MEMS field. The commercial MEMS community is heavily driven by the push for profitable and sustainable products. In the course of establishing high volume and low-cost production processes, the critical importance of materials properties, behaviors, reliability, reproducibility, and predictability, as well as process inte...
As the field of Microsystems expands into more disciplines and new applications such as RF-MEMS, Optical MEMS and Bio-MEMS, thermal management is becoming a critical issue in the operation of many microdevices, including microelectronic chips. Heat Convection in Micro Ducts focuses on the fundamental physics of convective heat transfer in microscale and specific applications such as: microchannel heat sinks, micro heat pipes, microcoolers and micro capillary pumped loops. This book will be of interest to the professional engineer and graduate student interested in learning about heat removal and temperature control in advanced integrated circuits and microelectromechanical systems.
Scanning Probe Lithography (SPL) describes recent advances in the field of scanning probe lithography, a high resolution patterning technique that uses a sharp tip in close proximity to a sample to pattern nanometer-scale features on the sample. SPL is capable of patterning sub-30nm features with nanometer-scale alignment registration. It is a relatively simple, inexpensive, reliable method for patterning nanometer-scale features on various substrates. It has potential applications for nanometer-scale research, for maskless semiconductor lithography, and for photomask patterning. The authors of this book have been key players in this exciting new field. Calvin Quate has been involved since t...