You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
We experience elasticity everywhere in daily life: in the straightening or curling of hairs, the irreversible deformations of car bodies after a crash, or the bouncing of elastic balls in ping-pong or soccer. The theory of elasticity is essential to the recent developments of applied and fundamental science, such as the bio-mechanics of DNA filaments and other macro-molecules, and the animation of virtual characters in computer graphics and materials science. In this book, the emphasis is on the elasticity of thin bodies (plates, shells, rods) in connection with geometry. It covers such topics as the mechanics of hairs (curled and straight), the buckling instabilities of stressed plates, inc...
We experience elasticity everywhere in everyday life. This book covers several modern aspects of the established field of elasticity theory, applying general methods of classical analysis including advanced nonlinear aspects to derive detailed solutions to specific problems. It can serve as an introduction to nonlinear methods in science.
This book is the third volume of lecture notes from summer schools held in the small village of Peyresq (France). These lectures cover nonlinear physics in a broad sense. They were given over the period 2004 to 2008. The summer schools were organized by the Institut Non Linéaire de Nice (Nice, France), the Laboratoire de Physique Statistique (ENS Paris, France) and the Institut de Recherche de Physique Hors Equilibre (Marseilles, France). The goal of the book is to provide a high-quality overview on the state of the art in nonlinear sciences, and to promote the transfer of knowledge between the various domains in physics dealing with nonlinear phenomena.
Part 1: How are the incredible diversity and robustness compatible with animal morphologies? Based on apical-basal and planar cell polarities’ ubiquity, I suggest a 3D mathematical model: Point particles represent cells having zero, one, or two unit-arrows representing polarities. I test the model abilities on preimplantation development, sea urchin gastrulation, mammalian neurulation, organoid folding, and tubulogenesis. I find that a minimal, versatile toolbox, including cellular polarities, captures the emergence of diverse and robust animal morphologies. Part 2: How are deep convective events spatially organized in the tropical atmosphere? Here, I test the importance of atmospheric cold pools for organizing convection. I suggest a 2D mathematical model: Points expand into circles representing cold pools. When circles meet, a convective event occurs, and a new circle forms. I find this model captures convective scale increase and initial stages of convective self-aggregation. The latter is crucial due to its link to tropical cyclogenesis.
" ... a compilation of lecture notes on various topics in nonlinear physics delivered by specialists during the summer schools organized by the Institut Non Linéaire de Nice (INLN) in Peyresq (French Alps of Provence) since 1998. The first volume, edited by R. Kaiser and J. Montaldi, contains courses from the years 1998 and 1999. This volume collects notes of the lectures given from the summers of 2000, 2001 and 2002"--Preface, v. 2.
This book is the third volume of lecture notes from summer schools held in the small village of Peyresq (France). These lectures cover nonlinear physics in a broad sense. They were given over the period 2004 to 2008. The summer schools were organized by the Institut Non Lin(r)aire de Nice (Nice, France), the Laboratoire de Physique Statistique (ENS Paris, France) and the Institut de Recherche de Physique Hors Equilibre (Marseilles, France). The goal of the book is to provide a high-quality overview on the state of the art in nonlinear sciences, and to promote the transfer of knowledge between the various domains in physics dealing with nonlinear phenomen
Publishing your research in an international journal is key to your success in academia. This guide is based on a study of over 1000 manuscripts and reviewers' reports revealing why papers written by non-native researchers are often rejected due to problems with English usage and poor structure and content. With easy-to-follow rules and tips, and examples taken from published and unpublished papers, you will learn how to: prepare and structure a manuscript increase readability and reduce the number of mistakes you make in English by writing concisely, with no redundancy and no ambiguity write a title and an abstract that will attract attention and be read decide what to include in the variou...
This book introduces readers to the living topics of Riemannian Geometry and details the main results known to date. The results are stated without detailed proofs but the main ideas involved are described, affording the reader a sweeping panoramic view of almost the entirety of the field. From the reviews "The book has intrinsic value for a student as well as for an experienced geometer. Additionally, it is really a compendium in Riemannian Geometry." --MATHEMATICAL REVIEWS
An approachable introduction to low Reynolds number flows and elasticity for those new to the area across engineering, physics, chemistry and biology.
Transports in fluids can be approached from two complementary perspectives. In the Eulerian view of mixing, the focus is on the concentration field. In the Langrangian view, fluid parcels are followed around as they move with the flow, experiencing chaotic or stochastic motion. This book examines both pictures, presenting a number of theoretical and experimental lectures on various aspects of transport and mixing of active and passive particles in geophysical flows.