You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
L’obra incomparable de Pilar Bayer està escrita en les persones,en totes les persones a les quals, en un moment o altre, ens ha fet gaudir del plaer d’escoltar matemàtiques, d’aprendre matemàtiques, de fer matemàtiques. Aquesta obra diversa, eclèctica, rica en mil matisos, roman en el terreny de les experiències personals que fan la nostra vida més interessant, i no la podem plasmar en un volum, ni en dos. És un llegat fantàstic que portem incorporat. Els treballs recopilats en aquests volums en ocasió del setantè aniversari de Pilar Bayer mostren en un format palpable l’amplitud de la seva òptica matemàtica, la profunditat i la bellesa de les seves matemàtiques. No és un recull exhaustiu, sinó una invitació perquè el lector faci un tastet d’allò que li agradi més. Després, ja no podrà parar. La persona i l’obra el captivaran per seguir endavant.
This volume addresses algebraic invariants that occur in the confluence of several important areas of mathematics, including number theory, algebra, and arithmetic algebraic geometry. The invariants are analogues for Galois cohomology of the characteristic classes of topology, which have been extremely useful tools in both topology and geometry. It is hoped that these new invariants will prove similarly useful. Early versions of the invariants arose in the attempt to classify the quadratic forms over a given field. The authors are well-known experts in the field. Serre, in particular, is recognized as both a superb mathematician and a master author. His book on Galois cohomology from the 1960s was fundamental to the development of the theory. Merkurjev, also an expert mathematician and author, co-wrote The Book of Involutions (Volume 44 in the AMS Colloquium Publications series), an important work that contains preliminary descriptions of some of the main results on invariants described here. The book also includes letters between Serre and some of the principal developers of the theory. It will be of interest to graduate students and research mathematicians interested in number th
This volume is a collection of papers on number theory which evolved out of the workshop WIN - Women in Numbers, held November 2nd-7th, 2008, in Alberta, Canada. The book includes articles showcasing outcomes from collaborative research initiated during the workshop.
Lists for 19 include the Mathematical Association of America, and 1955- also the Society for Industrial and Applied Mathematics.
Contains the proceedings of the Second International Workshop on Zeta Functions in Algebra and Geometry held May 3-7, 2010 at the Universitat de les Illes Balears, Palma de Mallorca, Spain. The conference focused on the following topics: arithmetic and geometric aspects of local, topological, and motivic zeta functions, Poincare series of valuations, zeta functions of groups, rings, and representations, prehomogeneous vector spaces and their zeta functions, and height zeta functions.
This unique text is an introduction to harmonic analysis on the simplest symmetric spaces, namely Euclidean space, the sphere, and the Poincaré upper half plane. This book is intended for beginning graduate students in mathematics or researchers in physics or engineering. Written with an informal style, the book places an emphasis on motivation, concrete examples, history, and, above all, applications in mathematics, statistics, physics, and engineering. Many corrections and updates have been incorporated in this new edition. Updates include discussions of P. Sarnak and others' work on quantum chaos, the work of T. Sunada, Marie-France Vignéras, Carolyn Gordon, and others on Mark Kac's que...
Neal Koblitz is a co-inventor of one of the two most popular forms of encryption and digital signature, and his autobiographical memoirs are collected in this volume. Besides his own personal career in mathematics and cryptography, Koblitz details his travels to the Soviet Union, Latin America, Vietnam and elsewhere; political activism; and academic controversies relating to math education, the C. P. Snow "two-culture" problem, and mistreatment of women in academia. These engaging stories fully capture the experiences of a student and later a scientist caught up in the tumultuous events of his generation.
The book presents the winners of the first five Abel Prizes in mathematics: 2003 Jean-Pierre Serre; 2004 Sir Michael Atiyah and Isadore Singer; 2005 Peter D. Lax; 2006 Lennart Carleson; and 2007 S.R. Srinivasa Varadhan. Each laureate provides an autobiography or an interview, a curriculum vitae, and a complete bibliography. This is complemented by a scholarly description of their work written by leading experts in the field and by a brief history of the Abel Prize. Interviews with the laureates can be found at http://extras.springer.com .
A volume containing original essays from quite diverse fields in mathematics is something of a rarity, especially if renowned scientists show the width of their discipline to the reader. This book is just such a rarity - a veritable gem. It was written to celebrate the 50th anniversary of the mathematical research institute at Oberwolfach. The articles span a range of topics from general reflections on the place of mathematics in contemporary culture to essays dealing with aspects of algebra, analysis, geometry, coding theory, scientific computing and topology. All essays are interrelated, proving the old rule that you can divide and still conquer. A book in which every mathematician or scientist interested in mathematics will find something to take their fancy.