Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Defects and Geometry in Condensed Matter Physics
  • Language: en
  • Pages: 396

Defects and Geometry in Condensed Matter Physics

Thermally excited defects such as vortices, disclinations, dislocations, vacancies and interstitials play a key role in the physics of crystals, superfluids, superconductors, liquid crystals and polymer arrays. Geometrical aspects of statistical mechanics become particularly important when thermal fluctuations entangle or crumple extended line-like or surface-like objects in three dimensions. In the case of entangled vortices above the first-order flux lattice melting transition in high temperature superconductors, the lines themselves are defects. A variety of low temperature theories combined with renormalization group ideas are used to describe the delicate interplay between defects, statistical mechanics and geometry characteristic of these problems in condensed matter physics. In this 2002 book, David Nelson provides a coherent and pedagogic graduate level introduction to the field of defects and geometry.

On Growth and Form
  • Language: en
  • Pages: 318

On Growth and Form

We have shown that simple power-law dynamics is expected for flexible fractal objects. Although the predicted behavior is well established for linear polymers, the situationm is considerably more complex for colloidal aggregates. In the latter case, the observed K-dependence of (r) can be explained either in terms of non-asymptotic hydrodynamics or in terms of weak power-law polydispersity. In the case of powders (alumina, in particular) apparent fractal behavior seen in static scattering is not found in the dynamics. ID. W. Schaefer, J. E. Martin, P. Wiitzius, and D. S. Cannell, Phys. Rev. Lett. 52,2371 (1984). 2 J. E. Martin and D. W. Schaefer, Phys. Rev. Lett. 5:1,2457 (1984). 3 D. W. Sch...

Theory of Quantum Transport in Metallic and Hybrid Nanostructures
  • Language: en
  • Pages: 307

Theory of Quantum Transport in Metallic and Hybrid Nanostructures

The book reflects scientific developments in the physics of metallic compound based nanodevices presented at the NATO-sponsored Workshop on nanophysics held in Russia in the summer of 2003. The program tackles the most appealing problems. It brings together specialists and provides an opportunity for young researchers from the partner countries to interact with them and get actively involved in the most attractive and promising interdisciplinary area of contemporary condensed matter physics.

Quantum Theory of Condensed Matter
  • Language: en
  • Pages: 261

Quantum Theory of Condensed Matter

Ever since 1911, the Solvay Conferences have shaped modern physics. The 24th edition chaired by Bertrand Halperin did not break the tradition. Held in October 2008, it gathered in Brussels most of the leading figures working on the ?quantum theory of condensed matter?, addressing some of the most profound open problems in the field. The proceedings contain the ?rapporteur talks? giving a broad overview with unique insights by distinguished renowned scientists. These lectures cover the five sessions treating: mesoscopic and disordered systems; exotic phases and quantum phase transitions in model systems; experimentally realized correlated-electron materials; quantum Hall systems, and one-dimensional systems; systems of ultra-cold atoms, and advanced computational methods. In the Solvay tradition, the proceedings include also the prepared comments to the rapporteur talks. The discussions among the participants ? some of which are quite lively and involving dramatically divergent points of view ? have been carefully edited and reproduced in full.

International Conference on Theoretical Physics
  • Language: en
  • Pages: 1024

International Conference on Theoretical Physics

The International Conference on Theoretical Physics, TH-2002, took place in Paris from July 22 to 27 in the Conference Center of the UNESCO, the United Nations Educational Scientific and Cultural Organization, under aegis of the IUPAP, the International Union of Pure and Applied Physics and of the French and Euro pean Physical Societies, with a large support of several French, European and international Institutions. International and crossdisciplinary, TH-2002 welcomed around 1200 partic ipants representing all domains of modern theoretical physics. The conference offered a high-level scientific program, including 18 plenary lectures, 45 general lectures in thematic sessions and 140 more sp...

Reshaping of Dirac Cones in Topological Insulators and Graphene
  • Language: en
  • Pages: 202

Reshaping of Dirac Cones in Topological Insulators and Graphene

Dirac cones are ubiquitous to non-trivial quantum matter and are expected to boost and reshape the field of modern electronics. Particularly relevant examples where these cones arise are topological insulators and graphene. From a fundamental perspective, this thesis proposes schemes towards modifying basic properties of these cones in the aforementioned materials. The thesis begins with a brief historical introduction which is followed by an extensive chapter that endows the reader with the basic tools of symmetry and topology needed to understand the remaining text. The subsequent four chapters are devoted to the reshaping of Dirac cones by external fields and delta doping. At all times, the ideas discussed in the second chapter are always a guiding principle to understand the phenomena discussed in those four chapters. As a result, the thesis is cohesive and represents a major advance in our understanding of the physics of Dirac materials.

Advances in Chemical Physics
  • Language: en
  • Pages: 398

Advances in Chemical Physics

The Advances in Chemical Physics series provides the chemical physics and physical chemistry fields with a forum for critical, authoritative evaluations of advances in every area of the discipline. Filled with cutting-edge research reported in a cohesive manner not found elsewhere in the literature, each volume of the Advances in Chemical Physics series serves as the perfect supplement to any advanced graduate class devoted to the study of chemical physics.

The Physical Review
  • Language: en
  • Pages: 1296

The Physical Review

Follow a time line of physics history and one thing becomes readily apparent - many of this century's major milestones were first documented in the pages of "The Physical Review." Now the most important of this research is brought together in this landmark book and CD-ROM package. Along with the celebrated work of luminaries such as Langmuir, Bohr, Wheeler, Feynman, this volume brings to light more obscure, though no less critical research. Together with papers from Physical Review Letters, this unique work puts more than 1,000 papers at your fingertips.

Composite Fermions
  • Language: en
  • Pages: 508

Composite Fermions

One of the most exciting recent developments to have emerged from the quantum Hall effect is the subject of composite fermions. This important volume gives a self-contained, comprehensive description of the subject, including fundamentals, more advanced theoretical work, and results from experimental observations of composite fermions.

Theory of the Nuclear Magnetic 1/T1 Relaxation Rate in Conventional and Unconventional Magnets
  • Language: en
  • Pages: 173

Theory of the Nuclear Magnetic 1/T1 Relaxation Rate in Conventional and Unconventional Magnets

One of the best ways to "lift the lid" on what is happening inside a given material is to study it using nuclear magnetic resonance (NMR). Of particular interest are NMR 1/T1 relaxation rates, which measure how fast energy stored in magnetic nuclei is transferred to surrounding electrons. This thesis develops a detailed, quantitative theory of NMR 1/T1 relaxation rates, and shows for the first time how they could be used to measure the speed at which energy travels in a wide range of magnetic materials. This theory is used to make predictions for"Quantum Spin Nematics", an exotic form of quantum order analogous to a liquid crystal. In order to do so, it is first necessary to unravel how spin nematics transport energy. This thesis proposes a new way to do this, based on the description of quarks in high-energy physics. Experiments to test the ideas presented are now underway in laboratories across the world.