You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Recent progress in high-throughput technologies and genome wide transcriptome studies have lead to a significant scientific milestone of discovering non-coding RNAs (ncRNAs) which spans through a major portion of the genome. These RNAs most often act as riboregulators, and actively participate in the regulation of important cellular functions at the transcriptional and/or post-transcriptional levels rather than simply being an intermediated messenger between DNA and proteins. As the appreciation for the importance of ncRNAs continues to emerge, it is also increasingly clear that these play critical roles in gene regulatory processes during development and differentiation. Further, regulatory...
This book highlights the recent advances in the field of microbial engineering and its application in human healthcare. It underscores the systemic and synthetic biology approaches for engineering microbes and discusses novel treatments for inflammatory bowel diseases based on engineered probiotics. The book also reviews the different options and methods for engineering microbes, ranging from recombinant DNA technology to designing microbes for targeting specific sites and delivering therapeutics. Further, it discusses genetically engineered microorganisms for smart diagnostics and describes current approaches in microbial gene editing using CRISPR-Cas9-based tools. Lastly, it summarizes the potential applications of human microbiome engineering in improving human health and explores potential strategies for scaling-up the production of engineered microbial strains for commercial purposes, as well as the challenges. Given its scope, this book is a valuable resource for students, researchers, academics and entrepreneurs interested in understanding microbial engineering for the production of commercial products.
This book concisely describes the role of omics in precision medicine for cancer therapies. It outlines our current understanding of cancer genomics, shares insights into the process of oncogenesis, and discusses emerging technologies and clinical applications of cancer genomics in prognosis and precision-medicine treatment strategies. It then elaborates on recent advances concerning transcriptomics and translational genomics in cancer diagnosis, clinical applications, and personalized medicine in oncology. Importantly, it also explains the importance of high-performance analytics, predictive modeling, and system biology in cancer research. Lastly, the book discusses current and potential future applications of pharmacogenomics in clinical cancer therapy and cancer drug development.
Bioinformatics: Principles and Applications is a comprehensive text designed to cater to the needs of undergraduate and postgraduate students of biotechnology and bioinformatics. This book will also cater to the requirements of students pursuing short-term diploma as also DOEACC courses in bioinformatics. Beginning with the aim and scope of bioinformatics, the book discusses in detail the essentials of the subject, such as bio-algorithms, bio-databases, molecular viewers, gene annotation methods, molecular phylogeny, and bio-molecular simulations. It further discusses the applications of bioinformatics in protein modeling and computer-aided drug design. The book also presents a discussion on molecular docking, including guidelines for using AutoDock software. The usage of select bioinformatics commercial software modules is also discussed. Written in a lucid style and user-friendly manner, the book with its wide and up to date coverage will be useful to students as well as practising professionals.
The 'RNA world' hypothesis that proposed RNA molecules as the first form of genetic material was put forwarded in the late 1980s but got impetus only recently when high-throughput sequencing technologies began unearthing new types of non-coding RNA (ncRNA) transcripts in higher eukaryotes. Till then, research on ncRNAs were primarily confined to transfer RNAs and, ribosomal RNAs, which act as the messengers of the protein synthesis and allow translation of genetic information encoded by DNA into proteins. In recent years, the integration of high-throughput genomic technologies with molecular biology and omics sciences have revolutionized the fields of ncRNA research by identifying the hidden...
RNA-based Regulation in Human Health and Disease offers an in-depth exploration of RNA mediated genome regulation at different hierarchies. Beginning with multitude of canonical and non-canonical RNA populations, especially noncoding RNA in human physiology and evolution, further sections examine the various classes of RNAs (from small to large noncoding and extracellular RNAs), functional categories of RNA regulation (RNA-binding proteins, alternative splicing, RNA editing, antisense transcripts and RNA G-quadruplexes), dynamic aspects of RNA regulation modulating physiological homeostasis (aging), role of RNA beyond humans, tools and technologies for RNA research (wet lab and computational...
The advances in biotechnology such as the next generation sequencing technologies are occurring at breathtaking speed. Advances and breakthroughs give competitive advantages to those who are prepared. However, the driving force behind the positive competition is not only limited to the technological advancement, but also to the companion data analy