You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Arguably the first book of its kind, Computational Bioengineering explores the power of multidisciplinary computer modeling in bioengineering. Written by experts, the book examines the interplay of multiple governing principles underlying common biomedical devices and problems, bolstered by case studies. It shows you how to take advantage of the la
This book explores critical principles and new concepts in bioengineering, integrating the biological, physical and chemical laws and principles that provide a foundation for the field. Both biological and engineering perspectives are included, with key topics such as the physical-chemical properties of cells, tissues and organs; principles of molecules; composition and interplay in physiological scenarios; and the complex physiological functions of heart, neuronal cells, muscle cells and tissues. Chapters evaluate the emerging fields of nanotechnology, drug delivery concepts, biomaterials, and regenerative therapy. The leading individuals and events are introduced along with their critical research. Bioengineering: A Conceptual Approach is a valuable resource for professionals or researchers interested in understanding the central elements of bioengineering. Advanced-level students in biomedical engineering and computer science will also find this book valuable as a secondary textbook or reference.
Bioengineering is attracting many high quality students. This invaluable book has been written for beginning students of bioengineering, and is aimed at instilling a sense of engineering in them.Engineering is invention and designing things that do not exist in nature for the benefit of humanity. Invention can be taught by making inventive thinking a conscious part of our daily life. This is the approach taken by the authors of this book. Each author discusses an ongoing project, and gives a sample of a professional publication. Students are asked to work through a sequence of assignments and write a report. Almost everybody soon realizes that more scientific knowledge is needed, and a strong motivation for the study of science is generated. The teaching of inventive thinking is a new trend in engineering education. Bioengineering is a good field with which to begin this revolution in engineering education, because it is a youthful, developing interdisciplinary field.
Bioengineering Innovative Solutions for Cancer bridges the gap between bioengineering and cancer biology. It focuses on a 'bottom up' understanding of the links between molecules, cells, tissues, organs, organisms, and health and functions-all within a bioengineering context. Chapters cover the main methods, technologies and devices that could help diagnose cancer sooner (e.g., ultrasensitive imaging and sensing technologies) and helpful treatments (e.g., new, more targeted therapies). The book takes an interdisciplinary approach that is ideal for those who need the latest information on design techniques and devices that help treat cancer using new, more targeted therapies. By covering the many different ways engineers can deliver innovative solutions to tackle cancer, this book is a valuable read for researchers who have an ambition to make an impact on people's life in either an academic or industrial setting.
A comprehensive presentation of essential topics for biological engineers, focusing on the development and application of dynamic models of biomolecular and cellular phenomena. This book describes the fundamental molecular and cellular events responsible for biological function, develops models to study biomolecular and cellular phenomena, and shows, with examples, how models are applied in the design and interpretation of experiments on biological systems. Integrating molecular cell biology with quantitative engineering analysis and design, it is the first textbook to offer a comprehensive presentation of these essential topics for chemical and biological engineering. The book systematicall...
This unique book about bioscience and the bioengineering of titanium materials is based on more than 1,000 published articles. It bridges the gap between the medical/dental fields and the engineering/technology areas, due to the author's unique experience in both during the last 30 years. The book covers Materials Classifications, Chemical and Electrochemical Reactions, Oxidation, Biological Reactions, Implant-related Biological Reactions, Applications, Fabri-cation Technologies, Surface Modifications, and Future Perspectives.* Provides quick access to the primary literature in this field* Reviews studies of titanium materials in medical and dental applications, as reported in nearly 1,500 articles published over last several years* Draws information from several types of studies and reports* Helps readers answer questions about the most appropriate materials and when to use them
A report on progress in the development of materials used in or on the human body, ranging from biopolymers used in controlled-release drug delivery systems and prosthetic devices to metals used in bone repair and plastics used in absorbable mechanisms such as sutures.
A thorough introduction to the basics of bioengineering, with a focus on applications in the emerging "white" biotechnology industry. As such, this latest volume in the "Advanced Biotechnology" series covers the principles for the design and analysis of industrial bioprocesses as well as the design of bioremediation systems, and several biomedical applications. No fewer than seven chapters introduce stoichiometry, kinetics, thermodynamics and the design of ideal and real bioreactors, illustrated by more than 50 practical examples. Further chapters deal with the tools that enable an understanding of the behavior of cell cultures and enzymatically catalyzed reactions, while others discuss the analysis of cultures at the level of the cell, as well as structural frameworks for the successful scale-up of bioreactions. In addition, a short survey of downstream processing options and the control of bioreactions is given. With contributions from leading experts in industry and academia, this is a comprehensive source of information peer-reviewed by experts in the field.
This indispensable guide provides a roadmap to the broad and varied career development opportunities in bioengineering, biotechnology, and related fields. Eminent practitioners lay out career paths related to academia, industry, government and regulatory affairs, healthcare, law, marketing, entrepreneurship, and more. Lifetimes of experience and wisdom are shared, including "war stories," strategies for success, and discussions of the authors’ personal views and motivations.