You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume is a comprehensive treatment of how the principles of ecology and conservation biology can be used to maximize biological control. Conservation Biological Control presents various means to modify or manipulate the environment to enhance the activities of natural enemies of pests. It establishes a conceptual link between ecology and the agricultural use of agents for biological control, and discusses both theoretical issues as well as practical management concerns. Certain to be interesting to ecologists and entomologists, this volume will also appeal to scientists, faculty, researchers and students interested in pest management, horticulture, plant sciences, and agriculture. - Contains chapters by an international team of leading authorities - Establishes a conceptual link between ecology and the agricultural use of agents for biological control - Discusses both theoretical issues as well as practical management concerns - Provides specific examples of how conservation principles are used to maximize the biological control of pests
Microbial Pesticides: Biological Resources, Production and Application provides a concise and accessible introduction on the history of microbial pesticides, their impact on global ecology, human society and economies, as well as a thorough and tangible description of the state-of-the-art technologies available for the production, application, limitations and long–term viability of these bio-products. Information is listed per biological group (i.e., virus, bacteria, fungi, protozoa, microsporidia and microbial metabolites), and is supported by sound scientific data. The book is copiously illustrated, with original pictures clarifying the most common techniques and protocols utilized in mi...
Biopesticide: Volume Two, the latest release in the Advances in Bioinoculant series, provides an updated overview on the active substances utilized in current bioinsecticides, along with information on which of them can be used for integrated pest management programs in agro-ecosystems. The book presents a comprehensive look at the development of novel solutions against new targets, also introducing new technologies that enhance the efficacy of already available active substances. Finally, readers will find insights into the advanced molecular studies on insect microbial community diversity that are opening new frontiers in the development of innovative pest management strategies. This book ...
Biological pesticides are increasingly finding therr place in IPM and increasing numbers of products are making therr way to the marketplace. Particularly in China, Latin America and Australia, implementation is proceeding on a large scale. However, in the USA and Europe, registration procedures for insect pathogens to be used for insect control have been established that requrre low levels of risk, resulting in costs of retarding the implementation of microbial agents. This book provides a review of the state of the art of studies on the envrronmental impact of microbial insecticides. It originates from a Society for Invertebrate Pathology Microbial Control Division Symposium .. Assessment ...
Among the highlights of this book are the use of nanotechnology to increase potency of available insecticides, the use of genetic engineering techniques for controlling insect pests, the development of novel insecticides that bind to unique biochemical receptors, the exploration of natural products as a source for environmentally acceptable insecticides, and the use of insect genomics and cell lines for determining biological and biochemical modes of action of new insecticides.
The publication of the extensive 7-volume work Comprehensive Molecular Insect Science provided library customers and their end-users with a complete reference encompassing important developments and achievements in modern insect science, including reviews on the ecdysone receptor, lipocalins, and bacterial toxins. One of the most popular areas in entomology is control, and this derivative work, Insect Control, taps into a previously unapproached market – the end user who desires to purchase a comprehensive yet affordable work on important aspects of this topic. Contents will include timeless articles covering insect growth- and development-disrupting insecticides, mechanisms and use of Bac...
Resistance to conventional pesticides has been growing rapidly among all pests. Furthermore, there is increased public concern about the safety of conventional pesticides, and increased governmental restrictions have resulted in the need to identify new compounds that are safe and effective in controlling pests that are of concern to agriculture as well as to public and animal health. Biopesticides may aid in the control of such pests with fewer deleterious effects to the environment, people and animals. The U.S. Environmental Protection Agency (EPA) defines biopesticides as "pesticides derived from such natural materials as animals, plants, bacteria, and certain minerals" (www.epa.gov). Acc...
Insects more similar in structure and physiology to mammals than plants or fungi. Consequently, insecticides are often of greater toxicity to mammals than herbicides. This is particularly the case with neurotoxins. However, some insecticides are targeted at structures or hormonal systems specific to insects (insect growth regulators/chitin synthesis inhibitors) so are less harmful but can still be mildly haematotoxic. There are, therefore, issues specific to insecticides, which do not occur with other pesticides - hence the need for a book specifically on insecticide toxicology in mammals. The book starts with general issues relating to the mammalian toxicity of insecticides, including target/non-target specificity, nomenclature and metabolism of insecticides. It then goes on to discuss specific types of insecticide including: organochlorines; anticholinesterases; pyrethrum and synthetic pyrethroids; nicotine and the neonicotinoids; insect growth regulators/ecdysone agonists/chitin synthesis inhibitors; insecticides of natural origin; biological insecticides; and insecticides used in veterinary medicine.
The future of insect control looked very bright in the 1950s and 1960s with new insecticides constantly coming onto the market. Today, however, whole classes of pesticide chemistry have fallen by the wayside due to misuse which generated resistance problems reaching crisis proportions, severe adverse effects on the environment, and public outcry that has led to increasingly stricter regulation and legislation. It is with this background, demanding the need for safer, environmentally friendly pesticides and new strategies to reduce resistance problems, that this book was written. The authors of the various chapters have a wealth of experience in pesticide chemistry, biochemical modes of actio...
Pesticides in the soil environment - an overview. Pesticide sources to the soil and principles of spray physics. The retention processes: mechanisms. Sorption estimates for modeling. Abiotic transformations in water, sediments, and soil. Biological transformation processes of pesticides. Volatilization and vapor transport processes. Organic chemical transport to Groundwater. Movement of pesticides into surface waters. Modeling pesticide fate in soils. Efficacy of soil-applied pesticides. Impact of pesticides on the environment. Risk/benefit and regulations. Chemical index.