You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Biomedical Technology and Devices, Second Edition focuses on the equipment, devices, and techniques used in modern medicine to diagnose, treat, and monitor human illnesses. Gathering together and compiling the latest information available on medical technology, this revised work adds ten new chapters. It starts with the basics, introducing the history of the thermometer and measuring body temperature, before moving on to a medley of devices that are far more complex. This book explores diverse technological functions and procedures including signal processing, auditory systems, magnetic resonance imaging, ultrasonic and emission imaging, image-guided thermal therapy, medical robotics, shape memory alloys, biophotonics, and tissue engineering. Each chapter offers a description of the technique, its technical considerations, and its use according to its applications and relevant body systems. It can be used as a professional resource, as well as a textbook for undergraduate and graduate students.
Biomedical Information Technology, Second Edition, contains practical, integrated clinical applications for disease detection, diagnosis, surgery, therapy and biomedical knowledge discovery, including the latest advances in the field, such as biomedical sensors, machine intelligence, artificial intelligence, deep learning in medical imaging, neural networks, natural language processing, large-scale histopathological image analysis, virtual, augmented and mixed reality, neural interfaces, and data analytics and behavioral informatics in modern medicine. The enormous growth in the field of biotechnology necessitates the utilization of information technology for the management, flow and organiz...
Concise yet comprehensive, the Biomedical Technology and Devices Handbook illuminates the equipment, devices, and techniques used in modern medicine to diagnose, treat, and monitor human illnesses. With topics ranging from the basic procedures like blood pressure measurement to cutting-edge imaging equipment, biological tests, and genetic engineeri
This book provides an overview of new mathematical models, computational simulations and experimental tests in the field of biomedical technology, and covers a wide range of current research and challenges. The first part focuses on the virtual environment used to study biological systems at different scales and under multiphysics conditions. In turn, the second part is devoted to modeling and computational approaches in the field of cardiovascular medicine, e.g. simulation of turbulence in cardiovascular flow, modeling of artificial textile-reinforced heart valves, and new strategies for reducing the computational cost in the fluid-structure interaction modeling of hemodynamics. The book’...
Biomedical Technology and Devices, Second Edition focuses on the equipment, devices, and techniques used in modern medicine to diagnose, treat, and monitor human illnesses. Gathering together and compiling the latest information available on medical technology, this revised work adds ten new chapters. It starts with the basics, introducing the hist
Advancing with Biomedical Engineering Today, in most developed countries, modem hospitals have become centers of sophis ticated health care delivery using advanced technological methods. These have come from the emergence of a new interdisciplinary field and profession, commonly referred to as "Bio medical Engineering." Although what is included in the field of biomedical engineering is quite clear, there are some disagreements about its definition. In its most comprehensive meaning, biomedical engineering is the application of the principles and methods of engi neering and basic sciences to the understanding of the structure-function relationships in normal and pathological mammalian tissue...
Successful product design and development requires the ability to take a concept and translate the technology into useful, patentable, commercial products. This book guides the reader through the practical aspects of the commercialization process of drug, diagnostic and device biomedical technology including market analysis, product development, intellectual property and regulatory constraints. Key issues are highlighted at each stage in the process, and case studies are used to provide practical examples. The book will provide a sound road map for those involved in the biotechnology industry to effectively plan the commercialization of profitable regulated medical products. It will also be suitable for a capstone design course in engineering and biotechnology, providing the student with the business acumen skills involved in product development.
This cutting edge book provides all the important aspects dealing with the basic science involved in materials in biomedical technology, especially structure and properties, techniques and technological innovations in material processing and characterizations, as well as the applications. The volume consists of 12 chapters written by acknowledged experts of the biomaterials field and covers a wide range of topics and applications including: The different types of nanobiomaterials How to generate porous biomaterials for tissue engineering Calcium phosphate-based biomaterials intended for mineralized tissue regenerative applications Nanocrystalline form of calcium phosphates Design and fabrication of SiO2 nanoparticles New kinds of titanium alloy implants Injectable growth factor system based on bone morphogenetic proteins Impedance sensing of biological processes in mammalian cells Hydrogels-based implantable glucose sensors Molecular design of multifunctional polymers for gene transfection Hydrogels and their potential biomedical applications Hybrid biomaterials with high mechanical and biological properties
Concise yet comprehensive, the Biomedical Technology and Devices Handbook illuminates the equipment, devices, and techniques used in modern medicine to diagnose, treat, and monitor human illnesses. With topics ranging from the basic procedures like blood pressure measurement to cutting-edge imaging equipment, biological tests, and genetic engineering, this book is organized to navigate smoothly from simple procedures and concepts to the more sophisticated and complex ones. Each section contains a description of the technique, its technical considerations, and its use according to its applications and relevant body systems. The book includes references to relevant Web sites, protocols, problems, and solutions.
This cutting edge book provides all the important aspects dealing with the basic science involved in materials in biomedical technology, especially structure and properties, techniques and technological innovations in material processing and characterizations, as well as the applications. The volume consists of 12 chapters written by acknowledged experts of the biomaterials field and covers a wide range of topics and applications including: The different types of nanobiomaterials How to generate porous biomaterials for tissue engineering Calcium phosphate-based biomaterials intended for mineralized tissue regenerative applications Nanocrystalline form of calcium phosphates Design and fabrication of SiO2 nanoparticles New kinds of titanium alloy implants Injectable growth factor system based on bone morphogenetic proteins Impedance sensing of biological processes in mammalian cells Hydrogels-based implantable glucose sensors Molecular design of multifunctional polymers for gene transfection Hydrogels and their potential biomedical applications Hybrid biomaterials with high mechanical and biological properties